Musical Instrument Identification Using Deep Learning Approach - Publikacja - MOST Wiedzy

Wyszukiwarka

Musical Instrument Identification Using Deep Learning Approach

Abstrakt

The work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata description and a review of related works. This is followed by showing the dataset prepared for the experiment and its division into subsets: training, validation, and evaluation. Then, the analyzed architecture of the neural network model is presented. Based on the described model, training is performed, and several quality metrics are determined for the training and validation sets. The results of the evaluation of the trained network on a separate set are shown. Detailed values for precision, recall, and the number of true and false positive and negative detections are presented. The model efficiency is high, with the metric values ranging from 0.86 for the guitar to 0.99 for drums. Finally, a discussion and a summary of the results obtained follows.

Cytowania

  • 2 7

    CrossRef

  • 0

    Web of Science

  • 2 3

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 22,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Blaszke M., Kostek B.: Musical Instrument Identification Using Deep Learning Approach// SENSORS -Vol. 22,iss. 8 (2022), s.3033-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s22083033
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 187 razy

Publikacje, które mogą cię zainteresować

Meta Tagi