Nanodiamond phantoms mimicking human liver: perspective to calibration of T1 relaxation time in magnetic resonance imaging - Publikacja - MOST Wiedzy

Wyszukiwarka

Nanodiamond phantoms mimicking human liver: perspective to calibration of T1 relaxation time in magnetic resonance imaging

Abstrakt

Phantoms of biological tissues are materials that mimic the properties of real tissues. This study shows the development of phantoms with nanodiamond particles for calibration of T1 relaxation time in magnetic resonance imaging. Magnetic resonance imaging (MRI) is a commonly used and non-invasive method of detecting pathological changes inside the human body. Nevertheless, before a new MRI device is approved for use, it is necessary to calibrate it properly and to check its technical parameters. In this article, we present phantoms of tissue with diamond nanoparticles dedicated to magnetic resonance calibration. The method of producing phantoms has been described. As a result of our research, we obtained phantoms that were characterized by the relaxation time T1 the same as the relaxation time of the human tissue T1 = 810.5 ms. Furthermore, the use of diamond nanoparticles in phantoms allowed us to tune the T1 value of the phantoms which open the way to elaborated phantoms of other tissues in the future.

Cytowania

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 61 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Scientific Reports nr 10, strony 1 - 6,
ISSN: 2045-2322
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Sękowska A., Majchrowicz D., Sabisz A., Ficek M., Bułło-Piontecka B., Kosowska M., Jing L., Bogdanowicz R., Szczerska M.: Nanodiamond phantoms mimicking human liver: perspective to calibration of T1 relaxation time in magnetic resonance imaging// Scientific Reports -Vol. 10,iss. 1 (2020), s.1-6
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/s41598-020-63581-9
Bibliografia: test
  1. Chrysikopoulos, H. S., Clinical MR Imaging and Physics: A Tutorial, Springer (2009).
  2. Grover, V. P. B. et al. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. Journal of Clinical and Experimental Hepatology 5, 246-255 (2015). otwiera się w nowej karcie
  3. Ridgway, J. P. Cardiovascular magnetic resonance physics for clinicians: part I. Journal of Cardiovascular Magnetic Resonance 12, 71 (2010). otwiera się w nowej karcie
  4. Chundru, S. et al. MRI of diffuse liver disease: characteristics of acute and chronic diseases. Diagn Interv Radiol 20, 200-208 (2014). otwiera się w nowej karcie
  5. Tang, X. et al. Magnetic resonance imaging relaxation time in Alzheimer's disease. Brain Research Bulletin 140, 176-189 (2018). otwiera się w nowej karcie
  6. Feder, I., Duadi, H. & Fixler, D. Experimental system for measuring the full scattering profile of circular phantoms. Biomed Opt Express 6, 2877-2886 (2015). otwiera się w nowej karcie
  7. Esenaliev, R. O., Larin, K. V., Larina, I. V. & Motamedi, M. Noninvasive monitoring of glucose concentration with optical coherence tomography. Opt. Lett., OL 26, 992-994 (2001). otwiera się w nowej karcie
  8. Pogue, B. W. & Patterson, M. S. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt 11, 041102 (2006). otwiera się w nowej karcie
  9. Feder, I., Duadi, H., Dreifuss, T. & Fixler, D. The influence of the blood vessel diameter on the full scattering profile from cylindrical tissues: experimental evidence for the shielding effect. Journal of Biophotonics 9, 1001-1008 (2016). otwiera się w nowej karcie
  10. Dehghani, H., Pogue, B. W., Jiang, S., Poplack, S. P. & Paulsen, K. D. Optical images from pathophysiological signals within breast tissue using three-dimensional near-infrared light. In Optical Tomography and Spectroscopy of Tissue V vol. 4955 191-198 (2013). otwiera się w nowej karcie
  11. Dehghani, H., Pogue, B. W., Shudong, J., Brooksby, B. & Paulsen, K. D. Three-dimensional optical tomography: resolution in small- object imaging. Appl Opt 42, 3117-3128 (2003). otwiera się w nowej karcie
  12. Yoshimura, K. et al. Development of a tissue-equivalent MRI phantom using carrageenan gel. Magnetic Resonance in Medicine 50, 1011-1017 (2003). otwiera się w nowej karcie
  13. Hattori, K. et al. Development of MRI phantom equivalent to human tissues for 3.0-T MRI. Med Phys 40, 032303 (2013). otwiera się w nowej karcie
  14. Mano, I., Goshima, H., Nambu, M. & Iio, M. New polyvinyl alcohol gel material for MRI phantoms. Magnetic Resonance in Medicine 3, 921-926 (1986). otwiera się w nowej karcie
  15. Bae, K. T., Commean, P. K. & Lee, J. Volumetric measurement of renal cysts and parenchyma using MRI: phantoms and patients with polycystic kidney disease. J Comput Assist Tomogr 24, 614-619 (2000). otwiera się w nowej karcie
  16. Ohno, S. et al. Production of a human-tissue-equivalent MRI phantom: optimization of material heating. Magn Reson Med Sci 7, 131-140 (2008). otwiera się w nowej karcie
  17. Hellerbach, A., Schuster, V., Jansen, A. & Sommer, J. MRI Phantoms -Are There Alternatives to Agar? PLOS ONE 8, e70343 (2013). otwiera się w nowej karcie
  18. Kato, H. et al. Composition of MRI phantom equivalent to human tissues. Med Phys 32, 3199-3208 (2005). otwiera się w nowej karcie
  19. Shenderova, O., Hens, S. & McGuire, G. Seeding slurries based on detonation nanodiamond in DMSO. Diamond and Related Materials 19, 260-267 (2010). otwiera się w nowej karcie
  20. Nunn, N. & Shenderova, O. Toward a golden standard in single digit detonation nanodiamond. physica status solidi (a) 213, 2138-2145 (2016). otwiera się w nowej karcie
  21. Wojciechowski, A. M. et al. Optical Magnetometry Based on Nanodiamonds with Nitrogen-Vacancy Color Centers. Materials 12, 2951 (2019). otwiera się w nowej karcie
  22. Hasgall, P. A. et al. IT'IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.0, (May 15, 2018).
  23. Bazrafshan, B. et al. A liver-mimicking MRI phantom for thermal ablation experiments. Med Phys 38, 2674-2684 (2011). otwiera się w nowej karcie
  24. Brzozowski, P., Penev, K. I., Martinez, F. M., Scholl, T. J. & Mequanint, K. Gellan gum-based gels with tunable relaxation properties for MRI phantoms. Magn Reson Imaging 57, 40-49 (2019). otwiera się w nowej karcie
  25. Baxi, J. et al. Retina-simulating phantom for optical coherence tomography. J Biomed Opt 19, 21106 (2014). otwiera się w nowej karcie
  26. Wróbel, M. S., Popov, A. P., Bykov, A. V., Tuchin, V. V. & Jędrzejewska-Szczerska, M. Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering. Biomed. Opt. Express, BOE 7, 2088-2094 (2016). otwiera się w nowej karcie
Źródła finansowania:
  • Program DS Wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej
  • Narodowa Agencja Wymiany Akedemickiej, Program im. Bekkera PPN/BEK/2018/1/00185
  • Narodowa Agencja Wymiany Akedemickiej, Program im. Iwanowskiej PPN/IWA/2018/1/00026/U/00001
  • Narodowe Centrum Nauki, projekt Preludium, 2017/25/N/ST7/01610
  • Fundacja na rzecz Nauki Polskiej, projekt Team-NET No. POIR.04.04.00-00-1644/1
Weryfikacja:
Politechnika Gdańska

wyświetlono 126 razy

Publikacje, które mogą cię zainteresować

Meta Tagi