NUMERICAL MODEL QUALITY ASSESSMENT OF OFFSHORE WIND TURBINE SUPPORTING STRUCTURE BASED ON EXPERIMENTAL DATA
Abstrakt
As a structure degrades some changes in its dynamical behavior can be observed, and inversely, observation and evaluation of these dynamical changes of the structure can provide information of structural state of the object. Testing of the real structure, besides of being costly, can cover only limited working states. It is particularly considerable in case of hardly accessible, and randomly/severely dynamically loaded offshore structures. As a testing instrument, numerical simulations are not limited as much, however a quality of answers depends significantly on an excellence of numerical model, and how in reality it reassembles the actual structure and the test results. One of the strategies is to correlate and update numerical models basing on the experimental data. Presented outcomes were obtained in frame of “AQUILO” project that aims to create a knowledge base, from which the investor will be able to decide on the best type of support structure for offshore wind farm specific location in Polish maritime areas. The examined object is laboratory tripod type support model (scaled) of the offshore wind turbine supporting structure, with appended flange on the one of the branches, allowing simulation of a fatigue cracking process. For the assessment and comparison with numerical model calculation results of the dynamical state of the structure the Experimental Modal Analysis (EMA) approach was selected. After several measuring campaigns a database of results including varying type of supporting condition, and crack opening stages, was obtained. The numerical model was constructed with use of Finite Element Method (FEM) approach. The quality of FE model was assessed using Modal Assurance Criterion (MAC) that compares both models modal vectors, that is modal deformation shapes. Also the differences in frequencies of modes was assessed and taken as quantification of an compatibility. The results (EMA) show importance of applying and modelling (FEM) of supporting condition. An additional senility analysis directs indicated best fit parameters for a start of FE optimization process.
Cytowania
-
2
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Tytuł wydania:
- Structural Health Monitoring 2015: System Reliability for Verification and Implementation: Proceedings of the 10th International Workshop on Structural Health Monitoring.- Vol. 1 strony 2817 - 2824
- Język:
- angielski
- Rok wydania:
- 2015
- Opis bibliograficzny:
- Kahsin M., Łuczak M.: NUMERICAL MODEL QUALITY ASSESSMENT OF OFFSHORE WIND TURBINE SUPPORTING STRUCTURE BASED ON EXPERIMENTAL DATA// Structural Health Monitoring 2015: System Reliability for Verification and Implementation: Proceedings of the 10th International Workshop on Structural Health Monitoring.- Vol. 1/ ed. Fu-Kuo Chang, Fotis Kopsaftopoulos 439 North Duke Street · Lancaster, PA 17602-4967, U.S.A. : DEStech Publications, Inc., 2015, s.2817-2824
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.12783/shm2015/349
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 120 razy
Publikacje, które mogą cię zainteresować
Uncertainty Quantification in Experimental Structural Dynamics Identification of Composite Material Structures
- M. Łuczak,
- B. Peeters,
- M. Kahsin
- + 2 autorów