Personal bankruptcy prediction using machine learning techniques - Publikacja - MOST Wiedzy

Wyszukiwarka

Personal bankruptcy prediction using machine learning techniques

Abstrakt

It has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies have focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to this situation, the present study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the study is to examine the usefulness of machine learning models such as SVM, random forest, AdaBoost, XGBoost, LightGBM, and CatBoost in forecasting personal bankruptcy. The study relies on two samples of households (learning and testing) from the Survey of Consumer Finances, which was conducted in the United States. Among the models estimated, LightGBM, CatBoost, and XGBoost showed the highest effectiveness. The most important variables used in the models are income, refusal to grant credit, delays in the repayment of liabilities, the revolving debt ratio, and the housing debt ratio.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Economics and Business Review nr 10, strony 118 - 142,
ISSN: 2392-1641
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Brygała M., Korol T.: Personal bankruptcy prediction using machine learning techniques// Economics and Business Review -Vol. 10,iss. 2 (2024), s.118-142
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.18559/ebr.2024.2.1149
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 37 razy

Publikacje, które mogą cię zainteresować

Meta Tagi