Polyurethane/Silane-Functionalized ZrO2 Nanocomposite Powder Coatings: Thermal Degradation Kinetics - Publikacja - MOST Wiedzy

Wyszukiwarka

Polyurethane/Silane-Functionalized ZrO2 Nanocomposite Powder Coatings: Thermal Degradation Kinetics

Abstrakt

A polyurethane (PU)-based powder coating reinforced with vinyltrimethoxysilane (VTMS)-functionalized ZrO2 nanoparticles (V-ZrO2) for thermal stability was developed. Chemical structure, microstructure and thermal degradation kinetics of the prepared coatings were investigated. The peak of aliphatic C–H vibrating bond in the Fourier transform infrared (FTIR) spectrum of V-ZrO2 was a signature of VTMS attachment. Scanning electron microscopy (SEM) images reveled that, by increase of V-ZrO2 content from 0.1 to 0.3 wt.% and then 0.5 wt.%, some agglomerations of nanoparticles are formed in the PU matrix. Thermogravimetric analysis (TGA) of the PU/V-ZrO2 powder coatings was performed at different heating rates nonisothermally to capture alteration of activation energy (Ea) of degradation of PU/V-ZrO2 powder coatings as a function of partial mass loss by using Friedman, Kissinger–Akahira-Sunose (KAS), Ozawa–Wall–Flynn (FWO) and modified Coats–Redfern isoconversional approaches. It was observed that by addition of 1 wt.% V-ZrO2 to PU resin the early state degradation temperature at 5% weight loss increased about 65 °C, suggesting a physical barrier effect limiting the volatility of free radicals and decomposition products. Incorporation of 5 wt.% ZrO2 led to about 16% and 10% increase in Ea and LnA of blank PU, respectively, which was indicative of higher thermal resistance of nanocomposite powder coatings against thermal degradation. There was also obvious agreement between model outputs and experimental data. The results reveal that nanocomposite coating shows superior thermal properties compared to neat PU powder coatings, and the presence of nano ZrO2 in sufficient amount causes retardation of the thermal decomposition process.

Cytowania

  • 1 5

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Autorzy (11)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 89 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Coatings nr 10,
ISSN: 2079-6412
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Tikhani F., Hadavand B., Bafghi H., Jouyandeh M., Vahabi H., Formela K., Hosseini H., Paran S., Esmaeili A., Mohaddespour A., Saeb M.: Polyurethane/Silane-Functionalized ZrO2 Nanocomposite Powder Coatings: Thermal Degradation Kinetics// Coatings -Vol. 10,iss. 4 (2020), s.413-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/coatings10040413
Bibliografia: test
  1. Spyrou, E.; Loesch, H.; Wenning, A. Low-temperature-curable, solid polyurethane powder coating compositions containing uretdione groups. U.S. Patent 6,914,115, 5 July 2005. otwiera się w nowej karcie
  2. Schmitt, F.; Wenning, A.; Weiss, J.-V. Dimeric isocyanates in polyurethane powder coatings. Prog. Org. Coat. 1998, 34, 227-235. otwiera się w nowej karcie
  3. Sultan, M.; Atta, S.; Bhatti, H.N.; Islam, A.; Jamil, T.; Bibi, I.; Gull, N. Synthesis, characterization, and application studies of polyurethane acrylate thermoset coatings: Effect of hard segment. Polym. Plast. Technol. Eng. 2017, 56, 1608-1618. otwiera się w nowej karcie
  4. Lee, S.S.; Han, H.Z.; Hilborn, J.G.; Månson, J.-A.E. Surface structure build-up in thermosetting powder coatings during curing. Prog. Org. Coat. 1999, 36, 79-88. otwiera się w nowej karcie
  5. Visakh, P.; Semkin, A.; Rezaev, I.; Fateev, A. Review on soft polyurethane flame retardant. Constr. Build. Mater. 2019, 227, 116673. otwiera się w nowej karcie
  6. Zhang, Z.; Sun, J.; Jia, M.; Qi, B.; Zhang, H.; Lv, W.; Mao, Z.; Chang, P.; Peng, J.; Liu, Y. Study on a thermosetting polyurethane modified asphalt suitable for bridge deck pavements: Formula and properties. Constr. Build. Mater. 2020, 241, 118122. otwiera się w nowej karcie
  7. Rossi, S.; Fedel, M.; Petrolli, S.; Deflorian, F. Accelerated weathering and chemical resistance of polyurethane powder coatings. J. Coat. Technol. Res. 2016, 13, 427-437. otwiera się w nowej karcie
  8. Chen, B.; He, M.; Huang, Z.; Wu, Z. Long-tern field test and numerical simulation of foamed polyurethane insulation on concrete dam in severely cold region. Constr. Build. Mater. 2019, 212, 618-634. otwiera się w nowej karcie
  9. Somarathna, H.; Raman, S.N.; Mohotti, D.; Mutalib, A.A.; Badri, K. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Constr. Build. Mater. 2018, 190, 995- 1014. otwiera się w nowej karcie
  10. Aliakbari, M.; Jazani, O.M.; Sohrabian, M.; Jouyandeh, M. Multi-nationality epoxy adhesives on trial for future nanocomposite developments. Prog. Org. Coat. 2019, 133, 376-386. otwiera się w nowej karcie
  11. Jouyandeh, M.; Rahmati, N.; Movahedifar, E.; Hadavand, B.S.; Karami, Z.; Ghaffari, M.; Taheri, P.; Bakhshandeh, E.; Vahabi, H.; Ganjali, M.R. Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective. Prog. Org. Coat. 2019, 133, 220-228. otwiera się w nowej karcie
  12. Akbari, V.; Najafi, F.; Vahabi, H.; Jouyandeh, M.; Badawi, M.; Morisset, S.; Ganjali, M.R.; Saeb, M.R. Surface chemistry of halloysite nanotubes controls the curability of low filled epoxy nanocomposites. Prog. Org. Coat. 2019, 135, 555-564, doi:10.1016/j.porgcoat.2019.06.009. otwiera się w nowej karcie
  13. Karami, Z.; Jouyandeh, M.; Ali, J.A.; Ganjali, M.R.; Aghazadeh, M.; Paran, S.M.R.; Naderi, G.; Puglia, D.; Saeb, M.R. Epoxy/layered double hydroxide (LDH) nanocomposites: Synthesis, characterization, and Excellent cure feature of nitrate anion intercalated Zn-Al LDH. Prog. Org. Coat. 2019, 136, 105218, doi:10.1016/j.porgcoat.2019.105218. otwiera się w nowej karcie
  14. Yu, H.; Wang, L.; Shi, Q.; Jiang, G.; Zhao, Z.; Dong, X. Study on nano-CaCO3 modified epoxy powder coatings. Prog. Org. Coat. 2006, 55, 296-300. otwiera się w nowej karcie
  15. Wang, P.; Ma, Q.; Li, B.; Li, Y. Microstructure and Thermal-protective Property of CPED Coating with ZrO2 Nanoparticles Addition on Al-12Si Alloy. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2019, 34, 1187-1192. otwiera się w nowej karcie
  16. Wang, S.; Tan, Z.; Li, Y.; Sun, L.; Zhang, T. Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochim. Acta 2006, 441, 191-194. otwiera się w nowej karcie
  17. Mishra, T.; Kumar, A.; Verma, V.; Pandey, K.; Kumar, V. PEEK composites reinforced with zirconia nanofiller. Compos. Sci. Technol. 2012, 72, 1627-1631. otwiera się w nowej karcie
  18. Nabiyev, A.; Olejniczak, A.; Pawlukojc, A.; Balasoiu, M.; Bunoiu, M.; Maharramov, A.; Nuriyev, M.; Ismayilova, R.; Azhibekov, A.; Kabyshev, A. Nano-ZrO2 filled high-density polyethylene composites: Structure, thermal properties, and the influence γ-irradiation. Polym. Degrad. Stab. 2020, 171, 109042. otwiera się w nowej karcie
  19. Wang, P.; Han, J.; Yan, J.; Wang, J. Effects of ZrO2 Nanoparticles on the Microstructure and Thermal- protective Properties of PEO Coating on Al-12.5% Si Alloy. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2019, 34, 156-164. otwiera się w nowej karcie
  20. Reyes-Acosta, M.; Torres-Huerta, A.M.; Dominguez-Crespo, M.A.; Flores-Vela, A.I.; Dorantes-Rosales, H.J.; Ramírez-Meneses, E. Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings. J. Alloys Compd. 2015, 643, S150-S158. otwiera się w nowej karcie
  21. Sow, C.; Riedl, B.; Blanchet, P. UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: Mechanical, optical, and thermal properties assessment. J. Coat. Technol. Res. 2011, 8, 211-221. otwiera się w nowej karcie
  22. Ma, X.; Tu, R.; Ding, C.; Zeng, Y.; Wang, Y.; Fang, T. Thermal and fire risk analysis of low pressure on building energy conservation material flexible polyurethane with various inclined facade constructions. Constr. Build. Mater. 2018, 167, 449-456. otwiera się w nowej karcie
  23. Vahabi, H.; Jouyandeh, M.; Cochez, M.; Khalili, R.; Vagner, C.; Ferriol, M.; Movahedifar, E.; Ramezanzadeh, B.; Rostami, M.; Ranjbar, Z. Short-lasting fire in partially and completely cured epoxy coatings containing expandable graphite and halloysite nanotube additives. Prog. Org. Coat. 2018, 123, 160-167. otwiera się w nowej karcie
  24. Saeb, M.; Vahabi, H.; Jouyandeh, M.; Movahedifar, E.; Khalili, R. Epoxy-based flame retardant nanocomposite coatings: Comparison between functions of expandable graphite and halloysite nanotubes. Prog. Colorcolorants Coat. 2017, 10, 245-252.
  25. Yuan, H.; Shi, Y.; Xu, Z.; Lu, C.; Ni, Y.; Lan, X. Influence of nano-ZrO2 on the mechanical and thermal properties of high temperature cementitious thermal energy storage materials. Constr. Build. Mater. 2013, 48, 6-10. otwiera się w nowej karcie
  26. Paran, S.M.R.; Vahabi, H.; Jouyandeh, M.; Ducos, F.; Formela, K.; Saeb, M.R. Thermal decomposition kinetics of dynamically vulcanized polyamide 6-acrylonitrile butadiene rubber-halloysite nanotube nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47483. otwiera się w nowej karcie
  27. Madhi, A.; Shirkavand Hadavand, B.; Amoozadeh, A. UV-curable urethane acrylate zirconium oxide nanocomposites: Synthesis, study on viscoelastic properties and thermal behavior. J. Compos. Mater. 2018, 52, 2973-2982. otwiera się w nowej karcie
  28. Hadavand, B.S.; Ataeefard, M.; Bafghi, H.F. Preparation of modified nano ZnO/polyester/TGIC powder coating nanocomposite and evaluation of its antibacterial activity. Compos. Part B Eng. 2015, 82, 190-195.
  29. Bockhorn, H.; Hornung, A.; Hornung, U. Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurements. J. Anal. Appl. Pyrolysis 1999, 50, 77-101. otwiera się w nowej karcie
  30. Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 2008, 93, 90-98. otwiera się w nowej karcie
  31. Jouyandeh, M.; Paran, S.M.R.; Shabanian, M.; Ghiyasi, S.; Vahabi, H.; Badawi, M.; Formela, K.; Puglia, D.; Saeb, M.R. Curing behavior of epoxy/Fe3O4nanocomposites: A comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-modified nanofillers. Prog. Org. Coat. 2018, 123, 10-19, doi:10.1016/j.porgcoat.2018.06.006. otwiera się w nowej karcie
  32. Rastin, H.; Saeb, M.R.; Nonahal, M.; Shabanian, M.; Vahabi, H.; Formela, K.; Gabrion, X.; Seidi, F.; Zarrintaj, P.; Sari, M.G.; et al. Transparent nanocomposite coatings based on epoxy and layered double hydroxide: Nonisothermal cure kinetics and viscoelastic behavior assessments. Prog. Org. Coat. 2017, 113, 126-135, doi:10.1016/j.porgcoat.2017.09.003. otwiera się w nowej karcie
  33. Saeb, M.R.; Rastin, H.; Shabanian, M.; Ghaffari, M.; Bahlakeh, G. Cure kinetics of epoxy/β-cyclodextrin- functionalized Fe3O4 nanocomposites: Experimental analysis, mathematical modeling, and molecular dynamics simulation. Prog. Org. Coat. 2017, 110, 172-181, doi:10.1016/j.porgcoat.2017.05.007. otwiera się w nowej karcie
  34. Saeb, M.R.; Nonahal, M.; Rastin, H.; Shabanian, M.; Ghaffari, M.; Bahlakeh, G.; Ghiyasi, S.; Khonakdar, H.A.; Goodarzi, V.; Vijayan, P.P.; et al. Calorimetric analysis and molecular dynamics simulation of cure kinetics of epoxy/chitosan-modified Fe3O4 nanocomposites. Prog. Org. Coat. 2017, 112, 176-186, doi:10.1016/j.porgcoat.2017.07.015. otwiera się w nowej karcie
  35. Nonahal, M.; Rastin, H.; Saeb, M.R.; Sari, M.G.; Moghadam, M.H.; Zarrintaj, P.; Ramezanzadeh, B. Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: Nonisothermal cure kinetics study. Prog. Org. Coat. 2018, 114, 233-243, doi:10.1016/j.porgcoat.2017.10.023. otwiera się w nowej karcie
  36. Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183-195, doi:10.1002/polc.5070060121. otwiera się w nowej karcie
  37. Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1-19, doi:10.1016/j.tca.2011.03.034. otwiera się w nowej karcie
  38. Venkatesh, M.; Ravi, P.; Tewari, S.P. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn-Wall-Ozawa method. J. Phys. Chem. A 2013, 117, 10162-10169, doi:10.1021/jp407526r. otwiera się w nowej karcie
  39. Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702-1706. otwiera się w nowej karcie
  40. Ebrahimi-Kahrizsangi, R.; Abbasi, M. Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans. Nonferrous Met. Soc. China 2008, 18, 217-221. otwiera się w nowej karcie
  41. Turmanova, S.C.; Genieva, S.; Dimitrova, A.; Vlaev, L. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym. Lett. 2008, 2, 133-146. otwiera się w nowej karcie
  42. Huang, C.C.; Wu, T.S.; Leu, A.L. Determination of kinetic parameters for decomposition reaction from a single DTA curve. Thermochim. Acta 1991, 188, 119-128, doi:10.1016/0040-6031(91)80209-2. otwiera się w nowej karcie
  43. Šesták, J.; Berggren, G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta 1971, 3, 1-12. otwiera się w nowej karcie
  44. Liu, X.; Hao, J.; Gaan, S. Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Adv. 2016, 6, 74742-74756, doi:10.1039/c6ra14345h. otwiera się w nowej karcie
  45. Gallo, E.; Schartel, B.; Acierno, D.; Russo, P. Flame retardant biocomposites: Synergism between phosphinate and nanometric metal oxides. Eur. Polym. J. 2011, 47, 1390-1401, doi:10.1016/j.eurpolymj.2011.04.001. otwiera się w nowej karcie
  46. Van Krevelen, D.W.; Te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands, 2009. otwiera się w nowej karcie
  47. Vimalathithan, P.K.; Barile, C.; Casavola, C.; Arunachalam, S.; Battisti, M.G.; Friesenbichler, W.; Vijayakumar, C.T. Thermal degradation kinetics of polypropylene/clay nanocomposites prepared by injection molding compounder. Polym. Compos. 2019, 40, 3634-3643, doi:10.1002/pc.25226. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 122 razy

Publikacje, które mogą cię zainteresować

Meta Tagi