Preprocessing of Document Images Based on the GGD and GMM for Binarization of Degraded Ancient Papyri Images - Publikacja - MOST Wiedzy

Wyszukiwarka

Preprocessing of Document Images Based on the GGD and GMM for Binarization of Degraded Ancient Papyri Images

Abstrakt

Thresholding of document images is one of the most relevant operations that influence the final results of their further analysis. Although many image binarization methods have been proposed during recent several years, starting from global thresholding, through local and adaptive methods, to more sophisticated multi-stage algorithms and the use of deep convolutional neural networks, proper thresholding of degraded historical document images is still an open challenge. Due to the release of the recent challenging DIBCO 2019 dataset, containing two categories of images with the particularly demanding papyri dataset (track B), most of the earlier proposed methods turned out to be significantly less effective for them. Analysing the competition’s results of the DIBCO 2019, apart from the variety of submitted trendy methods based on the use of deep learning, the great importance of image preprocessing may be observed for such demanding images. Hence, in this paper, we present the applicability analysis of the previously proposed preprocessing methods based on the use of the GGD and GMM in combination with various image binarization algorithms for this purpose. The obtained results are comparable with the state-of-the-art methods, including the top algorithms submitted to the recent DIBCO series contest.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Informacje szczegółowe

Kategoria:
Inna publikacyjna praca zbiorowa (w tym materiały konferencyjne)
Typ:
Inna publikacyjna praca zbiorowa (w tym materiały konferencyjne)
Tytuł wydania:
Progress in Image Processing, Pattern Recognition and Communication Systems (LNNS,volume 255) strony 116 - 124
ISSN:
2367-3370
Rok wydania:
2022
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-030-81523-3_11
Weryfikacja:
Brak weryfikacji

wyświetlono 15 razy

Publikacje, które mogą cię zainteresować

Meta Tagi