Prioritising national healthcare service issues from free text feedback – A computational text analysis & predictive modelling approach
Abstrakt
Patient experience surveys have become a key source of evidence for supporting decision-making and continuous quality improvement within healthcare services. To harness free-text feedback collected as part of these surveys for additional insights, text analytics methods are increasingly employed when the data collected is not amenable to traditional qualitative analysis due to volume. However, while text analytics techniques offer good predictive capabilities, they have limited explanatory features often required in formal decision-making contexts, such as programme monitoring or evaluation. To overcome these limitations, this study integrates computational text and predictive modelling as part of a Computational Grounded Theory method to determine the effect of quality gaps in care dimensions and their prioritisation from free-text feedback. The feedback was collected as part of a national survey to support decisions on continuous improvement in Maternity Services in Ireland. Our approach enables (1) operationalising the service quality lexicon in the context of maternity care to explain the effect of quality gaps in care dimensions on overall satisfaction from free-text comments; and (2) extending the service quality lexicon with two organisational and political decision-making concepts: “Salience” and “Valence”, for prioritising perceived quality gaps. These methodological affordances enable the extension of service quality theory to explicitly support the prioritisation of improvement decisions which before now required additional decision frameworks. Results show that tangibles-, process-, and reliability-related care issues have the highest importance in our study context. We also find that hospital contexts partly determine the relative importance of gaps in care dimensions.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (6)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.dss.2024.114215
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
DECISION SUPPORT SYSTEMS
nr 181,
ISSN: 0167-9236 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Ojo A., Rizun N., Walsh G., Mashinchi M. I., Venosa M., Rao M. N.: Prioritising national healthcare service issues from free text feedback – A computational text analysis & predictive modelling approach// DECISION SUPPORT SYSTEMS -Vol. 181, (2024), s.114215-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.dss.2024.114215
- Źródła finansowania:
-
- No funding
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 76 razy
Publikacje, które mogą cię zainteresować
S09-4 The development of the Physical Activity Environment Policy Index (PA-EPI): a tool for monitoring and benchmarking government policies and actions to improve physical activity
- C. B. Woods,
- L. Kelly,
- K. Volf
- + 7 autorów