Quasi-discrete modelling of PMSM phase currents in drives with low switching-to-fundamental frequency ratio - Publikacja - MOST Wiedzy

Wyszukiwarka

Quasi-discrete modelling of PMSM phase currents in drives with low switching-to-fundamental frequency ratio

Abstrakt

This study proposes a new quasi-discrete approach to modelling the permanent magnet synchronous motor (PMSM). The quasi-discrete modelling reflects the impact of continuous rotor movement, which takes place during a control cycle, on the shape of motor current waveforms. This provides much improvement in current modelling accuracy under inverter low switching-to-fundamental frequency operation. The proposed approach may be used in predictive control to compute current at forthcoming instants or in classical control to improve precision of determining mean current feedback. The superior accuracy of the quasi-discrete model is confirmed by simulation and experiment for an exemplary PMSM drive operating at inverter switching frequency of 5 kHz and fundamental frequency reaching 400 Hz.

Cytowania

  • 4

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 20 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2019 The Institution of Engineering and Technology)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IET Power Electronics nr 12, strony 3280 - 3285,
ISSN: 1755-4535
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Jarzębowicz L.: Quasi-discrete modelling of PMSM phase currents in drives with low switching-to-fundamental frequency ratio// IET Power Electronics -Vol. 12,iss. 12 (2019), s.3280-3285
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1049/iet-pel.2018.6285
Bibliografia: test
  1. Gerada, D., Mebarki, A., Brown, N.L., Gerada, C., Cavagnino, A., Boglietti, A.: "High-Speed Electrical Machines: Technologies, Trends, and Developments", IEEE Transactions on Industrial Electronics, 2014, 61, (6), pp. 2946-2959 otwiera się w nowej karcie
  2. Liu, G., Chen, B., Wang, K., Song, X.: "Selective Current Harmonic Suppression for High-Speed PMSM Based on High-Precision Harmonic Detection Method", IEEE Transactions on Industrial Informatics, 2018, pp. 1-1 otwiera się w nowej karcie
  3. Doppelbauer, M., Winzer, P.: "A lighter motor for tomorrow"s electric car", IEEE Spectrum, 2017, 54, (7), pp. 26-31 otwiera się w nowej karcie
  4. Adamczyk, D., Wilk, A., Michna, M.: "Model of the double-rotor induction motor in terms of electromagnetic differential", Archives of Electrical Engineering, 2016, 65, (4), pp. 761-772 otwiera się w nowej karcie
  5. Gerada, D., Zhang, H., Xu, Z., Calzo, G.L., Gerada, C.: "Electrical Machine Type Selection for High Speed Supercharger Automotive Applications". Proc. 19th International Conference on Electrical Machines and Systems (ICEMS), 2016, pp. 1-6
  6. Zabaleta, M., Jones, M., Levi, E.: "A tuning procedure for the current regulator loops in multiple three-phase permanent magnet machines with low switching to fundamental frequency ratio", Proc. 19th European Conference on Power Electronics and Applications (EPE"17 ECCE Europe), 2017, pp. 1-10 otwiera się w nowej karcie
  7. Sahoo, S.K., Bhattacharya, T.: "Rotor Flux-Oriented Control of Induction Motor With Synchronized Sinusoidal PWM for Traction Application", IEEE Transactions on Power Electronics, 2016, 31, (6), pp. 4429-4439 otwiera się w nowej karcie
  8. Kwon, Y.-C., Kim, S., Sul, S.-K.: "Six-Step Operation of PMSM With Instantaneous Current Control", IEEE Transactions on Industry Applications, 2014, 50, (4), pp. 2614-2625 otwiera się w nowej karcie
  9. Sepulchre, L., Fadel, M., Pietrzak-David, M.: "Improvement of the digital control of a high speed PMSM for vehicle application". Proc. Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER), 2016, pp. 1-9 otwiera się w nowej karcie
  10. Jarzebowicz, L.: "Modeling the impact of discretizing rotor angular position on computation of field-oriented current components in high speed electric drives", Applied Mathematical Modelling, 2017, 42, pp. 576- 590 otwiera się w nowej karcie
  11. Oleschuk, V., Barrero, F.: "Standard and Non-Standard Approaches for Voltage Synchronization of Drive Inverters with Space-Vector PWM: a Survey", International Review of Electrical Engineering (IREE), 2014, 9, (4), pp. 688-707 otwiera się w nowej karcie
  12. Tarczewski, T., Grzesiak, L.M.: "Constrained State Feedback Speed Control of PMSM Based on Model Predictive Approach", IEEE Transactions on Industrial Electronics, 2016, 63, (6), pp. 3867-3875 otwiera się w nowej karcie
  13. Sandre-Hernandez, O., Rangel-Magdaleno, J., Morales-Caporal, R.: "A Comparison on Finite-Set Model Predictive Torque Control Schemes for PMSMs", IEEE Transactions on Power Electronics, 2018, 33, (10), pp. 8838-8847 otwiera się w nowej karcie
  14. Ahmed, A.A., Koh, B.K., Lee, Y.I.: "A Comparison of Finite Control Set and Continuous Control Set Model Predictive Control Schemes for Speed Control of Induction Motors", IEEE Transactions on Industrial Informatics, 2018, 14, (4), pp. 1334-1346 otwiera się w nowej karcie
  15. Belda, K., Vosmik, D.: "Explicit Generalized Predictive Control of Speed and Position of PMSM Drives, "IEEE Transactions on Industrial Electronics, 2016, 63, (6), pp. 3889-3896 otwiera się w nowej karcie
  16. Siami, M., Khaburi, D.A., Rodríguez, J.: "Torque Ripple Reduction of Predictive Torque Control for PMSM Drives With Parameter Mismatch", IEEE Transactions on Power Electronics, 2017, 32, (9), pp. 7160-7168 otwiera się w nowej karcie
  17. Jarzebowicz, L.: "Impact of low switching-to- fundamental frequency ratio on predictive current control of PMSM: A simulation study". Proc. 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), 2018, pp. 1-5 otwiera się w nowej karcie
  18. Anuchin, A., Briz, F., Shpak, D., Lashkevich, M.: "PWM strategy for 3-phase 2-level VSI with non- idealities compensation and switching losses minimization". Proc. IEEE International Electric Machines and Drives Conference (IEMDC), 2017, pp. 1-6 otwiera się w nowej karcie
  19. Persson, E.: "Motor current measurement using time- modulated signals". Proc. Power Conversion Conference PCC, Osaka 2002, pp. 716-720 otwiera się w nowej karcie
  20. Wolf, C.M., Degner, M.W., Briz, F.: "Analysis of Current Sampling Errors in PWM VSI Drives", IEEE Transactions on Industry Applications, 2015, 51, (2), pp. 1551-1560 otwiera się w nowej karcie
  21. Jarzebowicz, L.: "Errors of a Linear Current Approximation in High-Speed PMSM Drives", IEEE Transactions on Power Electronics, 2017, 32, (11), pp. 8254-8257 otwiera się w nowej karcie
  22. Wang, H., Yang, M., Niu, L., Xu, D.: "Current-loop bandwidth expansion strategy for permanent magnet synchronous motor drives". Proc. 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2010, pp. 1340-1345
  23. Zhang, Y., Huang, L., Xu, D., Liu, J., Jin, J.: "Performance evaluation of two-vector-based model predictive current control of PMSM drives", Chinese Journal of Electrical Engineering, 2018, 4, (2), pp. 65- 81 otwiera się w nowej karcie
  24. Wang, W., Fan, Y., Chen, S., Zhang, Q.: "Finite control set model predictive current control of a five- phase PMSM with virtual voltage vectors and adaptive control set", CES Transactions on Electrical Machines and Systems, 2018, 2, (1), pp. 136-141 otwiera się w nowej karcie
  25. Jarzebowicz, L., Mirchevski, S.: "Modeling the impact of rotor movement on non-linearity of motor currents waveforms in high-speed PMSM drives", Proc. 19th European Conference on Power Electronics and Applications EPE"2017 ECCE Europe, Warsaw, 2017. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 115 razy

Publikacje, które mogą cię zainteresować

Meta Tagi