Recovery of silver metallization from damaged silicon cells - Publikacja - MOST Wiedzy

Wyszukiwarka

Recovery of silver metallization from damaged silicon cells

Abstrakt

Metallization is one of the key process steps to fabricate solar cells with high performance in a cost-effective way. Majority of photovoltaic solar cell manufacturing uses thick film screen print metallization with Ag containing paste to produce solar cells. The average lifetime of PV modules can be expected to be more than 25 years. The disposal of PV systems will become a problem in view of the continually increasing production of PV modules. These can be recycled for about the same cost as their disposal. The proposed method of acidic and basic etching of contacts, presented in this article can be successfully applied to broken solar cells from the landfill without a specialist analysis procedure. The amount of silver that can be recovered from the etching solution is up to 1.6 kg/t of broken solar cells. The step-by-step procedure improves efficiency of silver recovery. The best and easiest method for general verification of the silver etching rate is classic titration with suitable concentrations of titrant solution.

Cytowania

  • 4 8

    CrossRef

  • 0

    Web of Science

  • 4 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 899 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SOLAR ENERGY MATERIALS AND SOLAR CELLS nr 176, strony 190 - 195,
ISSN: 0927-0248
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kuczyńska-Łażewska A., Klugmann-Radziemska E., Sobczak Z., Klimczuk T.: Recovery of silver metallization from damaged silicon cells// SOLAR ENERGY MATERIALS AND SOLAR CELLS. -Vol. 176, (2018), s.190-195
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.solmat.2017.12.004
Bibliografia: test
  1. E.A. Abdel-Aal, F.E. Farghaly, Preparation of silver powders in micron size from used photographic films via leaching-cementation technique, Powder Technol. 178 (1) (2007) 51-55, http://dx.doi.org/10.1016/j.powtec.2007.03.041. otwiera się w nowej karcie
  2. S. Aktas, Silver recovery from spent silver oxide button cells, Hydrometallurgy 104 (2010) 106-111, http://dx.doi.org/10.1016/j.hydromet.2010.05.004. otwiera się w nowej karcie
  3. A.F.B. Braga, S.P. Moreira, P.R. Zampieri, J.M.G. Bacchin, P.R. Mei, New processes for the production of solar-grade polycrystalline silicon: a review, Sol. Energy Mater. Sol. Cells 92 (2008) 418-424, http://dx.doi.org/10.1016/j.solmat.2007.10. 003. otwiera się w nowej karcie
  4. C. Choi, Y. Cui, Recovery of silver from wastewater coupled with power generation using a microbial fuel cell, Bioresour. Technol. 107 (2012) 522-525, http://dx.doi. org/10.1016/j.biortech.2011.12.058. otwiera się w nowej karcie
  5. U. Condomitti, A.T. Silveira, G.W. Condomitti, S.H. Toma, K. Araki, H.E. Toma, Silver recovery using electrochemically active magnetite coated carbon particles, Hydrometallurgy 147-148 (2014) 241-245, http://dx.doi.org/10.1016/j. hydromet.2014.06.001. otwiera się w nowej karcie
  6. P. Dias, S. Javimczik, M. Benevit, H. Veit, A.M. Bernardes, Recycling WEEE: ex- traction and concentration of silver from waste crystalline silicon photovoltaic modules, Waste Manag. 57 (2016) 220-225, http://dx.doi.org/10.1016/j.wasman. 2016.03.016. otwiera się w nowej karcie
  7. R. Dimeska, P.S. Murray, S.F. Ralph, G.G. Wallace, Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials, Polymer 47 (13) (2006) 4520-4530, http://dx.doi.org/10.1016/j.polymer.2006. 03.112. otwiera się w nowej karcie
  8. L.A. Dobrzański, M. Musztyfaga, Effect of the front electrode metallisation process on electrical parameters of a silicon solar cell, J. Achiev. Mater. Manuf. Eng. 48 (2) (2011) 115-144. otwiera się w nowej karcie
  9. L.A. Dobrzański, M. Musztyfaga, A. Drygała, Final manufacturing process of front side metallisation on silicon solar cells using conventional and unconventional techniques, Stroj. Vestnik. J. Mech. Eng. 59 (3) (2013) 175-182, http://dx.doi.org/ 10.5545/sv-jme.2012.625. otwiera się w nowej karcie
  10. L.A. Dobrzański, M. Musztyfaga, A. Drygała, W. Kwaśny, P. Panek, Structure and electrical properties of screen printed contacts on silicon solar cells, J. Achiev. Mater. Manuf. Eng. 45 (2) (2011) 141-147 http://jamme.acmsse.h2.pl/papers_ vol45_2/4524.pdf (Accessed 7 May 2017).
  11. L. Frisson, K. Lieten, T. Bruton, K. Declercq, J. Szlufcik, H. de Moor, M. Goris, A. Benali, O. Aceves, Recent improvements in industrial PV module recycling, in: Proceedings of the 16th European Photovoltaic Solar Energy Conference, G, 1-5 May 2000.
  12. S.W. Glunz, R. Preu, D. Biro, Crystalline silicon solar cells -state-of-the-art and future developments, Compr. Renew. Energy (2012) 65-95, http://dx.doi.org/10. 1016/B978-0-08-087872-0.00211-0. otwiera się w nowej karcie
  13. S. Kang, S. Yoo, J. Lee, B. Boo, H. Ryu, Experimental investigations for recycling of silicon and glass from waste photovoltaic modules, Renew. Energy 47 (2012) 152-159, http://dx.doi.org/10.1016/j.renene.2012.04.030. otwiera się w nowej karcie
  14. E. Klugmann-Radziemska, P. Ostrowski, Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules, Renewable Energy 35 (2010) 1751-1759, http://dx.doi.org/10.1016/j.renene. 2009.11.031. otwiera się w nowej karcie
  15. J. Krause, R. Woehl, D. Biro , Analysis of local Al-P+ -layers for solar cells pro- cessed by small screen-printed structures, in: Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, 2010, pp. 1899-1904. 〈http://dx.doi.org/10.4229/25thEUPVSEC2010-2CV.2.53〉. otwiera się w nowej karcie
  16. M. Lipiński, P. Panek, Optimisation of monocrystalline silicon solar cell, OptoElectron. Rev. 11 (4) (2003) 291-295.
  17. U. Loser, W. Palitzsch, Method for Concentrating Metals from Scrap Containing Metal, (2016).
  18. S.O. Masebinu, E. Muzenda, Review of silver recovery techniques from radiographic effluent and x-ray film waste, World Congr. Eng. Comput. Sci. II (2014). otwiera się w nowej karcie
  19. A.J. McEvoy, J. Augustin, T. Markvart, L. Castañer, Solar Cells: Materials, Manufacture and Operation, Elsevier, 2013.
  20. A. Mette, New Concepts for the Front Side Metallization of Silicon Solar Cells (Ph.D. dissertation), (2007).
  21. A. Mondon, M.N. Jawaid, J. Bartsch, M. Glatthaar, S.W. Glunz, Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel -copper contacts on silicon solar cells, Solar Energy Mater. Solar Cells 117 (2013) 209-213, http://dx.doi.org/10.1016/j.solmat.2013.06.005. otwiera się w nowej karcie
  22. A. Müller, I. Röver, K. Wambach, D.W. von Ramin-Marro , Recovery of high value material of different photovoltaic technologies, in: Proceedings of the 22nd
  23. European Photovoltaic Solar Energy Conference, Milan, 2007, pp. 2613-2616. otwiera się w nowej karcie
  24. S. Nieland, U. Neuhaus, T. Pfaff, E. Rädlein, New approaches for component re- cycling of crystalline solar modules, in: Proceedings of the Electronics Goes Green, IEEE, Berlin, pp. 1-5. otwiera się w nowej karcie
  25. W. Palitzsch, U. Loser , A new and intelligent de-metalization step of broken silicon cells and silicon cell production waste in the recycling procedure of crystalline SI modules, in: Proceedings of the 37th IEEE Photovoltaic Specialists Conference, IEEE, 2011, pp. 3269-3270. 〈http://dx.doi.org/10.1109/PVSC.2011.6186635〉. otwiera się w nowej karcie
  26. T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater. 2 (3) (2010) 96-102, http://dx.doi.org/10.1038/ asiamat.2010.82. otwiera się w nowej karcie
  27. B. Tang, G. Yu, J. Fang, T. Shi, Recovery of high-purity silver directly from dilute effluents by an emulsion liquid membrane-crystallization process, J. Hazard. Mater. 177 (1-3) (2010) 377-383, http://dx.doi.org/10.1016/j.jhazmat.2009.12.042. otwiera się w nowej karcie
  28. H.-C. Tao, Z.-Y. Gao, H. Ding, N. Xu, W.-M. Wu, Recovery of silver from silver(I)- containing solutions in bioelectrochemical reactors, Bioresour. Technol. 111 (2012) 92-97, http://dx.doi.org/10.1016/j.biortech.2012.02.029. otwiera się w nowej karcie
  29. J. Tao, S. Yu, Review on feasible recycling pathways and technologies of solar photovoltaic modules, Solar Energy Mater. Solar Cells 141 (2015) 108-124, http:// dx.doi.org/10.1016/j.solmat.2015.05.005. otwiera się w nowej karcie
  30. A. Troupis, A. Hiskia, E. Papaconstantinou, Photocatalytic reduction-recovery of silver using polyoxometalates, Appl. Catal. B: Environ. 42 (2003) 305-315. otwiera się w nowej karcie
  31. P. Vitanov, E. Goranova, V. Stavrov, P. Ivanov, P.K. Singh, Fabrication of buried contact silicon solar cells using porous silicon, Sol. Energy Mater. Sol. Cells 93 (3) (2009) 297-300, http://dx.doi.org/10.1016/j.solmat.2008.10.015. otwiera się w nowej karcie
  32. T.Y. Wang, J.C. Hsiao, C.H. Du , Recycling of materials from silicon base solar cell module, in: Proceedings of the IEEE Photovoltaic Specialists Conference, 2012, pp. 2355-2358. 〈http://dx.doi.org/10.1109/PVSC.2012.6318071〉. otwiera się w nowej karcie
  33. Post-print of: Kuczyńska-Łażewska A., Klugmann-Radziemska E., Sobczak Z., Klimczuk T.: Recovery of silver metallization from damaged silicon cells. SOLAR ENERGY MATERIALS AND SOLAR CELLS. Vol. 176, (2018), s.190-195. DOI: 10.1016/ j.solmat.2017.12.004
Weryfikacja:
Politechnika Gdańska

wyświetlono 179 razy

Publikacje, które mogą cię zainteresować

Meta Tagi