ReFlexeNN - the Wearable EMG Interface with Neural Network Based Gesture Classification - Publikacja - MOST Wiedzy

Wyszukiwarka

ReFlexeNN - the Wearable EMG Interface with Neural Network Based Gesture Classification

Abstrakt

The electromyographic activity of muscles was measured using a wireless biofeedback device. The aim of the study was to examine the possibility of creating an automatic muscle tension classifier. Several measurement series were conducted and the participant performed simple physical exercises - forcing the muscle to increase its activity accordingly to the selected scale. A small wireless device was attached to the electrodes placed on the patient's body in the area of biceps muscle. The patient body position, electrode placement and performed exercises were the features that as much as possible, minimized the impact of the surrounding muscles influence. The data were recorded and an analysis was made using QT /C++ environment. The exercises were designed to enable evaluation of muscle activity according to Lovett scale. The aim of the research described in this article was to help in the assessing of the muscle strength tension to assess progress in rehabilitation. The designed feed-forward neural network allowed classification of recorded signals with 78% accuracy.

Cytowania

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Tytuł wydania:
2018 11th International Conference on Human System Interaction (HSI) strony 255 - 260
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Toczko H., Troka P., Przystup P., Kocejko T., Krzyżanowski P., Kaczmarek M.: ReFlexeNN - the Wearable EMG Interface with Neural Network Based Gesture Classification// 2018 11th International Conference on Human System Interaction (HSI)/ : , 2018, s.255-260
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/hsi.2018.8431188
Weryfikacja:
Politechnika Gdańska

wyświetlono 113 razy

Publikacje, które mogą cię zainteresować

Meta Tagi