Stabilities of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and their derivatives under controlled conditions analyzed using liquid chromatography coupled with tandem mass spectrometry - Publikacja - MOST Wiedzy

Wyszukiwarka

Stabilities of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and their derivatives under controlled conditions analyzed using liquid chromatography coupled with tandem mass spectrometry

Abstrakt

Bisphenol A diglycidyl ether (BADGE), bisphenol F diglycydyl ether (BFDGE), and their related compounds are widely used as precursors in production of epoxy resins. The high reactivity of these compounds makes the development of analytical methodologies that ensure appropriate metrological accuracy crucial. Consequently, we aimed to determine whether and to what extent the composition of the solution and storage conditions affect the stability of selected BADGE and BFDGE derivatives. The stabilities of these compounds were studied using liquid chromatography–tandem mass spectrometry with electrospray ionization (HPLC-ESI–MS/MS). The chromatographic method elaborated here has allowed for separation of the analytes in time shorter than 6 min, for both methanol and acetonitrile-based mobile phases. The obtained calibration curves for all analytes were linear in the range tested. The values of limit of detection (LODs) were in the range of 0.91–2.7 ng/mL, while values of limit of quantitation (LOQs) were in the range of 2.7–5.7 ng/mL. The chosen experimental conditions were compared in terms of the content of organic solvent in solution, storage temperature, and time. Our results show that the content of BADGE, BADGE·HCl, BFDGE, three-ring NOGE decreased with increasing water content (> 40% v/v). For BADGE and three-ring NOGE, significant changes in concentration were noted as early as 24 h after the test solutions had been prepared. In addition, a reduction in the storage temperature (4 to − 20 °C) reduced the rate of transformation of the monitored analytes. Our study will increase quality control in future research and may increase the reliability of the obtained results.

Cytowania

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 110 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ANALYTICAL AND BIOANALYTICAL CHEMISTRY nr 411, strony 6387 - 6398,
ISSN: 1618-2642
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Jatkowska N., Kubica P., Kudłak B., Namieśnik J., Wasik A.: Stabilities of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and their derivatives under controlled conditions analyzed using liquid chromatography coupled with tandem mass spectrometry// ANALYTICAL AND BIOANALYTICAL CHEMISTRY. -Vol. 411, iss. 24 (2019), s.6387-6398
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00216-019-02016-5
Bibliografia: test
  1. Szczepańska N, Kudłak B, Namieśnik J. Assessing ecotoxicity and the endocrine potential of selected phthalates, BADGE and BFDGE derivatives in relation to environmentally detectable levels. Sci Total Environ. 2018;610-611:854-66. https://doi.org/10.1016/j. scitotenv.2017.08.160. otwiera się w nowej karcie
  2. da Costa JP, Santos PSM, Duarte AC, Rocha-Santos T. (Nano)plastics in the environment-sources, fates and effects. Sci Total Environ. 2016;566-567:15-26. otwiera się w nowej karcie
  3. Waring RH, Harris RM, Mitchell SC. Plastic contamination of the food chain: a threat to human health? Maturitas. 2018;115:64-8. otwiera się w nowej karcie
  4. Li WC, Tse HF, Fok L. Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ. 2016;566-567:333-49. otwiera się w nowej karcie
  5. Casabianca S, Capellacci S, Giacobbe MG, Dell'Aversano C, Tartaglione L, Varriale F, et al. Plastic-associated harmful microalgal assemblages in marine environment. Environ Pollut. 2019;244:617-26. https://doi.org/10.1016/j.envpol.2018.09.110. otwiera się w nowej karcie
  6. Michałowicz J. Bisphenol A-sources, toxicity and biotransforma- tion. Environ Toxicol Pharmacol. 2014;37:738-58. otwiera się w nowej karcie
  7. Rezg R, El-Fazaa S, Gharbi N, Mornagui B. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int. 2014;64:83-90. otwiera się w nowej karcie
  8. Chang Y, Nguyen C, Paranjpe VR, Gilliland F, Zhang J. Analysis of bisphenol A diglycidyl ether (BADGE) and its hydrolytic metabo- lites in biological specimens by high-performance liquid chroma- tography and tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2014;965:33-8. https://doi.org/10.1016/ j.jchromb.2014.06.005. otwiera się w nowej karcie
  9. Xue J, Venkatesan AK, Wu Q, Halden RU, Kannan K. Occurrence of bisphenol a diglycidyl ethers (BADGEs) and novolac glycidyl ethers (NOGEs) in archived biosolids from the U.S. EPA's targeted national sewage sludge survey. Environ Sci Technol. 2015;49: 6538-44. https://doi.org/10.1021/acs.est.5b01115. otwiera się w nowej karcie
  10. Bentayeb K, Ackerman LK, Begley TH. Ambient ionization- accurate mass spectrometry (AMI-AMS) for the identification of nonvisible set-off in food-contact materials. J Agric Food Chem. 2012;60:1914-20. https://doi.org/10.1021/jf204456z. otwiera się w nowej karcie
  11. Xue J, Kannan K. Novel finding of widespread occurrence and accumulation of bisphenol A diglycidyl ethers (BADGEs) and no- volac glycidyl ethers (NOGEs) in marine mammals from the United States coastal waters. Environ Sci Technol. 2016;50:1703-10. https://doi.org/10.1021/acs.est.5b04650. otwiera się w nowej karcie
  12. Xue J, Kannan P, Kumosani TA, Al-Malki AL, Kannan K. Resin- based dental sealants as a source of human exposure to bisphenol analogues, bisphenol A diglycidyl ether, and its derivatives. Environ Res. 2018;162:35-40. https://doi.org/10.1016/j.envres. 2017.12.011. otwiera się w nowej karcie
  13. Szczepańska N, Kudłak B, Namieśnik J. Recent advances in assessing xenobiotics migrating from packaging material-a re- view. Anal Chim Acta. 2018;1023:1-21. https://doi.org/10.1016/j. aca.2018.03.045. otwiera się w nowej karcie
  14. Gallart-Ayala H, Moyano E, Galceran MT. Fast liquid chromatography-tandem mass spectrometry for the analysis of bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether and their derivatives in canned food and beverages. J Chromatogr A. 2011;1218:1603-10. https://doi.org/10.1016/j.chroma.2011.01. 026. otwiera się w nowej karcie
  15. Begley TH, Biles JE, Hollifield HC. Migration of an epoxy adhe- sive compound into a food-simulating liquid and food from micro- wave susceptor packaging. J Agric Food Chem. 1991;39:1944-5. https://doi.org/10.1021/jf00011a010. otwiera się w nowej karcie
  16. Cheng Y, Nie X m, Wu H q, Hong Y h, Yang B c, Liu T, et al. A high-throughput screening method of bisphenols, bisphenols digycidyl ethers and their derivatives in dairy products by ultra- high performance liquid chromatography-tandem mass spectrome- try. Anal Chim Acta. 2017;950:98-107. https://doi.org/10.1016/j. aca.2016.11.006. otwiera się w nowej karcie
  17. Wagner M, Oehlmann J. Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res. 2009;16:278-86. https://doi.org/10.1007/ s11356-009-0107-7. otwiera się w nowej karcie
  18. Wang L, Xue J, Kannan K. Widespread occurrence and accumula- tion of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives in human blood and adipose fat. Environ Sci Technol. 2015;49:3150-7. https:// doi.org/10.1021/acs.est.5b00096. otwiera się w nowej karcie
  19. Sueiro RA, Suárez S, Araujo M, Garrido MJ. Mutagenic and genotoxic evaluation of bisphenol F diglycidyl ether (BFDGE) in prokaryotic and eukaryotic systems. Mutat Res -Genet Toxicol Environ Mutagen. 2003;536:39-48. https://doi.org/10.1016/ S1383-5718(03)00033-0. otwiera się w nowej karcie
  20. Pérez-Palacios D, Fernández-Recio MÁ, Moreta C, Tena MT. Determination of bisphenol-type endocrine disrupting compounds in food-contact recycled-paper materials by focused ultrasonic solid-liquid extraction and ultra performance liquid chromatography-high resolution mass spectrometry. Talanta. 2012;99:167-74. https://doi.org/10.1016/j.talanta.2012.05.035. otwiera się w nowej karcie
  21. Fasano E, Bono-Blay F, Cirillo T, Montuori P, Lacorte S. Migration of phthalates, alkylphenols, bisphenol A and di(2- ethylhexyl)adipate from food packaging. Food Control. 2012;27: 132-8. https://doi.org/10.1016/j.foodcont.2012.03.005. otwiera się w nowej karcie
  22. Cutanda F, Koch HM, Esteban M, Sánchez J, Angerer J, Castaño A. Urinary levels of eight phthalate metabolites and bisphenol A in mother-child pairs from two Spanish locations. Int J Hyg Environ Health. 2015;218:47-57. https://doi.org/10.1016/j.ijheh.2014.07. 005. otwiera się w nowej karcie
  23. Marqueño A, Pérez-Albaladejo E, Flores C, Moyano E, Porte C. Toxic effects of bisphenol A diglycidyl ether and derivatives in human placental cells. Environ Pollut. 2019;244:513-21. https:// doi.org/10.1016/j.envpol.2018.10.045. otwiera się w nowej karcie
  24. Xue J, Wan Y, Kannan K. Occurrence of bisphenols, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Chemosphere. 2016;151:1-8. https://doi.org/ 10.1016/j.chemosphere.2016.02.038. otwiera się w nowej karcie
  25. Jiao Y, Ding L, Fu S, Zhu S, Li H, Wang L. Determination of bisphenol A, bisphenol F and their diglycidyl ethers in environmen- tal water by solid phase extraction using magnetic multiwalled car- bon nanotubes followed by GC-MS/MS. Anal Methods. 2012;4: 291-8. https://doi.org/10.1039/c1ay05433c. otwiera się w nowej karcie
  26. Tran TM, Minh TB, Kumosani TA, Kannan K. Occurrence of phthalate diesters (phthalates), p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE) and their deriv- atives in indoor dust from Vietnam: implications for exposure. Chemosphere. 2016;144:1553-9. https://doi.org/10.1016/j. chemosphere.2015.10.028. otwiera się w nowej karcie
  27. Aszyk J, Kubica P, Kot-Wasik A, Namieśnik J, Wasik A. Comprehensive determination of flavouring additives and nicotine in e-cigarette refill solutions. Part I: liquid chromatography-tandem mass spectrometry analysis. J Chromatogr A. 2017;1519:45-54. https://doi.org/10.1016/j.chroma.2017.08.056. otwiera się w nowej karcie
  28. Míguez J, Herrero C, Quintás I, Rodríguez C, Gigosos PG, Mariz OC. A LC-MS/MS method for the determination of BADGE- related and BFDGE-related compounds in canned fish food sam- ples based on the formation of [M + NH 4 ] + adducts. Food Chem. 2012;135:1310-5. https://doi.org/10.1016/j.foodchem.2012.05. 099. otwiera się w nowej karcie
  29. Asimakopoulos AG, Thomaidis NS, Kannan K. Widespread occur- rence of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid es- ters (parabens), benzophenone type-UV filters, triclosan, and triclocarban in human urine from Athens, Greece. Sci Total Environ. 2014;470-471:1243-9. https://doi.org/10.1016/j. scitotenv.2013.10.089. otwiera się w nowej karcie
  30. Lane RF, Adams CD, Randtke SJ, Carter RE. Bisphenol diglycidyl ethers and bisphenol A and their hydrolysis in drinking water. Water Res. 2015;72:331-9. https://doi.org/10.1016/j.watres.2014.09.043. otwiera się w nowej karcie
  31. Wang L, Wu Y, Zhang W, Kannan K. Widespread occurrence and distribution of bisphenol a diglycidyl ether (BADGE) and its deriv- atives in human urine from the United States and China. Environ Sci Technol. 2012;46:12968-76. https://doi.org/10.1021/ es304050f. otwiera się w nowej karcie
  32. Wang L, Liao C, Liu F, Wu Q, Guo Y, Moon HB, et al. Occurrence and human exposure of p-hydroxybenzoic acid esters (parabens), bisphenol a diglycidyl ether (BADGE), and their hydrolysis prod- ucts in indoor dust from the United States and three east Asian countries. Environ Sci Technol. 2012;46:11584-93. https://doi. org/10.1021/es303516u. otwiera się w nowej karcie
  33. Cerkvenik-Flajs V, Volmajer Valh J, Gombač M, Švara T. Analysis and testing of bisphenol A, bisphenol A diglycidyl ether and their derivatives in canned dog foods. Eur Food Res Technol. 2018;244: 43-56. https://doi.org/10.1007/s00217-017-2930-2. otwiera się w nowej karcie
  34. Paseiro-Cerrato R, Devries J, Begley TH. Evaluation of short-term and long-term migration testing from can coatings into food simulants: epoxy and acrylic-phenolic coatings. J Agric Food Chem. 2017;65:2594-602. https://doi.org/10.1021/acs.jafc. 7b00081. otwiera się w nowej karcie
  35. Publisher's note Springer Nature remains neutral with regard to jurisdic- tional claims in published maps and institutional affiliations. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 200 razy

Publikacje, które mogą cię zainteresować

Meta Tagi