Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
Abstrakt
This paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of data network traffic of any organization network is benign, and malignant traffic is rare, researchers therefore have to deal with a class imbalance problem. Substantial research has been undertaken in order to identify these methods or data features that allow to accurately identify these attacks. But the usual tactic to deal with the imbalance class problem is to label all malignant traffic as one class and then solve the binary classification problem. In this paper, however, we choose not to group or to drop rare classes but instead investigate what could be done in order to achieve good multi-class classification efficiency. Rare class records were up-sampled using SMOTE method (Chawla et al., 2002) to a preset ratio targets. Experiments with the 3 network traffic datasets, namely CIC-IDS2017, CSE-CIC-IDS2018 (Sharafaldin et al., 2018) and LITNET-2020 (Damasevicius et al., 2020) were performed aiming to achieve reliable recognition of rare malignant classes available in these datasets. Popular machine learning algorithms were chosen for comparison of their readiness to support rare class detection. Related algorithm hyper parameters were tuned within a wide range of values, different data feature selection methods were used and tests were executed with and without over-sampling to test the multiple class problem classification performance of rare classes. Machine learning algorithms ranking based on Precision, Balanced Accuracy Score, G¯ , and prediction error Bias and Variance decomposition, show that decision tree ensembles (Adaboost, Random Forest Trees and Gradient Boosting Classifier) performed best on the network intrusion datasets used in this research.
Cytowania
-
1 3
CrossRef
-
0
Web of Science
-
1 5
Scopus
Autorzy (3)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.15388/21-INFOR457
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Informatica
nr 32,
strony 441 - 475,
ISSN: 0868-4952 - Język:
- angielski
- Rok wydania:
- 2021
- Opis bibliograficzny:
- Bulavas V., Marcinkevičius V., Rumiński J.: Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets// INFORMATICA-LITHUAN -, (2021), s.441-475
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.15388/21-infor457
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 99 razy
Publikacje, które mogą cię zainteresować
OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems
- S. S. Narayana Chintapalli,
- S. Prakash Singh,
- J. Frnda
- + 3 autorów
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
- L. Fei,
- Z. Jiayan,
- S. Jiaqi
- + 1 autorów
Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android Malware Detection
- A. G. Akintola,
- A. O. Balogun,
- H. Mojeed
- + 5 autorów