The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion - Publikacja - MOST Wiedzy

Wyszukiwarka

The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion

Abstrakt

Objective The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. Methods One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then prepared. Nonlinear static analyses with a fixed flexion/extension movement for a compressive load of 1000 N were performed. The additional analyses for those models with a constrained medio-lateral relative bone translation allowed for an evaluation of the influence of this translation on a meniscus external shift. Results It was observed that a decrease in the meniscus height caused a decrease in the contact area, together with a decrease in the contact force between the flattened meniscus and the cartilage. For the models with an increased meniscus height, a maximal value of force acting on the meniscus in a medio-lateral direction was obtained. The results have shown that the meniscus external shift was approximately proportional to the meniscus slope angle, but that relationship was modified by a medio-lateral relative bone translation. It was found that the translation of the femur relative to the tibia may be dependent on the geometry of the menisci. Conclusions The results have suggested that a change in the meniscus geometry in the cross sectional plane can considerably affect not only the meniscal external shift, but also the medio-lateral translation of the knee joint as well as the congruency of the knee joint.

Cytowania

  • 1 3

    CrossRef

  • 0

    Web of Science

  • 1 5

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 14 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
PLOS ONE nr 13, wydanie 2, strony 1 - 10,
ISSN: 1932-6203
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Luczkiewicz P., Daszkiewicz K., Witkowski W., Chróścielewski J., Ferenc T., Baczkowski B.: The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion// PLOS ONE. -Vol. 13, iss. 2 (2018), s.1-10
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1371/journal.pone.0193020
Bibliografia: test
  1. Krause WR, Pope MH, Johnson RJ, Wilder DG. Mechanical changes in the knee after meniscectomy. J. Bone Joint Surg. Am. 1976; 58: 599-604. PMID: 946970 otwiera się w nowej karcie
  2. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin. Orthop. Relat. Res. 1975; 109: 184-92. otwiera się w nowej karcie
  3. Bloecker K, Guermazi A, Wirth W, Benichou O, Kwoh CK, Hunter DJ, et al. Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing-data from the Osteoarthritis Ini- tiative. Osteoarthritis Cartilage 2013; 21: 419-27. https://doi.org/10.1016/j.joca.2012.11.015 PMID: 23220556 otwiera się w nowej karcie
  4. Bruns K, Svensson F, Turkiewicz A, Wirth W, Guermazi A, Eckstein F, et al. Meniscus body position and its change over four years in asymptomatic adults: a cohort study using data from the Osteoarthritis Initiative (OAI). BMC Musculoskelet. Disord. 2014; 15: 32. https://doi.org/10.1186/1471-2474-15-32 PMID: 24499033 otwiera się w nowej karcie
  5. McNulty AL, Guilak F. Mechanobiology of the Meniscus. Journal of Biomechanics 2015; 48: 1469-78. https://doi.org/10.1016/j.jbiomech.2015.02.008 PMID: 25731738 otwiera się w nowej karcie
  6. Bloecker K, Wirth W, Guermazi A, Hunter DJ, Resch H, Hochreiter J, et al. Relationship between Medial Meniscal Extrusion and Cartilage Loss in Specific Femorotibial Subregions -Data from the Osteoarthri- tis Initiative. Arthritis Care Res. 2015; 67: 1545-52. otwiera się w nowej karcie
  7. Kaukinen P, Podlipská J, Guermazi A, Niinimäki J, Lehenkari P, Roemer FW, et al. Associations between MRI-defined structural pathology and generalized and localized knee pain-the Oulu Knee Osteoarthritis study. Osteoarthritis Cartilage 2016; 24: 1565-76. https://doi.org/10.1016/j.joca.2016. 05.001 PMID: 27174007 otwiera się w nowej karcie
  8. Felson DT. Osteoarthritis as a disease of mechanics. Osteoarthritis Cartilage 2013; 21: 10-15. https:// doi.org/10.1016/j.joca.2012.09.012 PMID: 23041436 otwiera się w nowej karcie
  9. Wenger A, Englund M, Wirth W, Hudelmaier M, Kwoh K, Eckstein F. Relationship of 3D meniscal mor- phology and position with knee pain in subjects with knee osteoarthritis: a pilot study. Eur Radiol. 2012; 22: 211-20. https://doi.org/10.1007/s00330-011-2234-z PMID: 21842432 otwiera się w nowej karcie
  10. Wenger A, Wirth W, Hudelmaier M, Noebauer-Huhmann I, Trattnig S, Bloecker K. Meniscus body posi- tion, size, and shape in persons with and persons without radiographic knee osteoarthritis: quantitative analyses of knee magnetic resonance images from the osteoarthritis initiative. Arthritis Rheum. 2013; 65: 1804-11. https://doi.org/10.1002/art.37947 PMID: 23529645 otwiera się w nowej karcie
  11. Arno S, Walker PS, Bell CP, Krasnokutsky S, Samuels J, Abramson SB. Relation between cartilage vol- ume and meniscal contact in medial osteoarthritis of the knee. Knee 2012; 19: 896-901. https://doi.org/ 10.1016/j.knee.2012.04.005 PMID: 22560645 otwiera się w nowej karcie
  12. Lee DH, Lee BS, Kim JM, Yang KS, Cha EJ, Park JH., et al. Predictors of degenerative medial menis- cus extrusion: radial component and knee osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2011; 19: 222-29. https://doi.org/10.1007/s00167-010-1274-2 PMID: 20890696 otwiera się w nowej karcie
  13. Jung KA, Lee SC, Hwang SH, Yang KH, Kim DH, Sohn JH. High frequency of meniscal hypertrophy in persons with advanced varus knee osteoarthritis. Rheumatol. Int. 2010; 30: 1325-33. https://doi.org/ 10.1007/s00296-009-1153-7 PMID: 19826824 otwiera się w nowej karcie
  14. Hwang SH, Jung KA, Lee WJ, Yang KH, Lee DW, Carter A, et al. Morphological changes of the lateral meniscus in end-stage lateral compartment osteoarthritis of the knee. Osteoarthritis Cartilage 2012; 20: 110-6 https://doi.org/10.1016/j.joca.2011.11.005 PMID: 22133800 otwiera się w nowej karcie
  15. Patel R., Eltgroth M, Souza RB, Zhang CA, Majumdar S, Link TM, et al. Loaded versus unloaded mag- netic resonance imaging (MRI) of the knee: Effect on meniscus extrusion in healthy volunteers and patients with osteoarthritis. Eur. J. Radiol. Open. 2016; 23: 100-7. otwiera się w nowej karcie
  16. Łuczkiewicz P, Daszkiewicz K, Witkowski W, Chróścielewski J, Zarzycki W. Influence of meniscus shape in the cross-sectional plane on the knee contact mechanics. Journal of Biomechanics 2015; 48: 1356-63. https://doi.org/10.1016/j.jbiomech.2015.03.002 PMID: 25892539 otwiera się w nowej karcie
  17. Erdemir A. Open Knee: Open Source Modeling and Simulation in Knee Biomechanics. The Journal of Knee Surgery 2016; 29: 107-16. https://doi.org/10.1055/s-0035-1564600 PMID: 26444849 otwiera się w nowej karcie
  18. Szarmach A, Luczkiewicz P, Skotarczak M, Kaszubowski M, Winklewski PJ, Dzierzanowski J, et al. Assessment of the relationship between the shape of the lateral meniscus and the risk of extrusion based on MRI examination of the knee joint. PLoS ONE 2016; 11: e0159156. https://doi.org/10.1371/ journal.pone.0159156 PMID: 27415422 otwiera się w nowej karcie
  19. Łuczkiewicz P, Daszkiewicz K, Chróścielewski J, Witkowski W, Winklewski PJ. The Influence of Articu- lar Cartilage Thickness Reduction on Meniscus Biomechanics. PLoS ONE 2016; 11(12), e0167733. https://doi.org/10.1371/journal.pone.0167733 PMID: 27936066 otwiera się w nowej karcie
  20. Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR. The sensitivity of tibiofemoral contact pressure to the size and shape of the lateral and medial menisci. J. Orthop. Res. 2004; 22: 807-14. https://doi.org/ 10.1016/j.orthres.2003.12.010 PMID: 15183438 otwiera się w nowej karcie
  21. Khoshgoftar M, Vrancken AC, van Tienen TG, Buma P, Janssen D, Verdonschot N. The sensitivity of cartilage contact pressures in the knee joint to the size and shape of an anatomically shaped meniscal implant. J Biomech 2015; 48(8): 1427-1435. https://doi.org/10.1016/j.jbiomech.2015.02.034 PMID: 25766390 otwiera się w nowej karcie
  22. Weissheimer A, Menezes LM, Sameshima GT, Enciso R, Pham J, Grauer D. Imaging software accu- racy for 3-dimensional analysis of the upper airway. Am J Orthod Dentofacial Otrhop. 2012; 142 (6):801-13. otwiera się w nowej karcie
  23. Van Den Broeck J, Vereecke E, Wirix-Speetjens R, Sloten JV. Segmentation accuracy of the knee joint using MRI technology. Bone & Joint J. 2013; 95-B(Suppl. 34): 186. otwiera się w nowej karcie
  24. Van Den Broeck J, Vereecke E, Wirix-Speetjens R, Sloten JV. Segmentation accuracy of long bones. Medical Engineering & Physics 2014; 36: 949-953. otwiera się w nowej karcie
  25. Abaqus 6.14-2 User Manual, Dassault Systemes Simulia Corp., Providence, RI, USA. otwiera się w nowej karcie
  26. Huang A, Hull ML, Howell SM, Haut Donahue TL. Identification of Cross-Sectional Parameters of Lat- eral Meniscal Allografts That Predict Tibial Contact Pressure in Human Cadaveric Knees. Journal of Biomechanical Engineering 2002; 124: 481-9. PMID: 12405589 otwiera się w nowej karcie
  27. Kazemi M, Dabiri Y, Li LP. Recent Advances in Computational Mechanics of the Human Knee Joint. Computational and Mathematical Methods in Medicine 2013; Article ID 718423, 27 pages. otwiera się w nowej karcie
  28. Blanc R, Seiler C, Székely G, Nolte LP, Reyes M. Statistical model based shape prediction from a com- bination of direct observations and various surrogates: Application to orthopaedic research. Medical Image Analysis 2012; 16: 1156-66. https://doi.org/10.1016/j.media.2012.04.004 PMID: 22687954 otwiera się w nowej karcie
  29. Shepherd DET, Seedhom BB. The 'instantaneous' compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology 1999; 38: 124-32. PMID: 10342624 otwiera się w nowej karcie
  30. Li G, Lopez O, Rubash H. Variability of a Three Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis. Journal of Biomechanical Engineering 2001; 123: 341-6. PMID: 11563759 otwiera się w nowej karcie
  31. Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR. How the stiffness of meniscal attachments and meniscal material properties affect tibiofemoral contact pressure computed using a validated finite ele- ment model of the human knee joint. Journal of Biomechanics 2003; 36: 19-34. PMID: 12485635
  32. Yang NH, Canavan PK, Nayeb-Hashemi H. The effect of the frontal plane tibiofemoral angle and varus knee moment on the contact stress and strain at the knee cartilage. Journal of Applied Biomechanics 2010; 26: 432-43. PMID: 21245503 otwiera się w nowej karcie
  33. Hauch KN, Villegas DF, Haut Donahue TL. Geometry, time dependent and failure properties of human meniscal attachments. Journal of Biomechanics 2010; 43: 463-8. https://doi.org/10.1016/j.jbiomech. 2009.09.043 PMID: 19896669 otwiera się w nowej karcie
  34. Holzapfel G. Nonlinear Solid Mechanics, A Continuum Approach for Engineering. New York, Wiley; 2001. otwiera się w nowej karcie
  35. Ali A, Hosseini M, Sahari BB. A Review of Constitutive Models for Rubber-Like Materials. American J. of Engineering and Applied Sciences 2010; 3(1): 232-239. otwiera się w nowej karcie
  36. Weiss JA, Maker BN, Govindjee S. Finite element implementation of incompressible, transversely iso- tropic hyperelasticity. Computer Methods in Applied Mechanics and Engineering 1996; 135: 107-28. otwiera się w nowej karcie
  37. Peña E, Calvo B, Martinez MA, Doblare M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics 2006; 39: 1686-1701. https://doi.org/10.1016/j.jbiomech.2005.04.030 PMID: 15993414 otwiera się w nowej karcie
  38. Gardiner JC, Weiss JA. Subject specific finite element analysis of the human medial collateral ligament during valgus knee loading. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society 2003; 21: 1098-106. otwiera się w nowej karcie
  39. Peña E, Martinez MA, Calvo B, Doblaré M. On the numerical treatment of initial strains in biological soft tissues. International Journal for Numerical Methods in Engineering 2006; 68: 836-60. otwiera się w nowej karcie
  40. Stehling C, Souza RB, Le Graverand M-PH, Wyman BT, Li X, Majumdar S, et al. Loading of the knee during 3.0 T MRI is associated with significantly increased medial meniscus extrusion in mild and mod- erate osteoarthritis. European Journal of Radiology 2012; 81: 1839-45. https://doi.org/10.1016/j.ejrad. 2011.05.027 PMID: 21684704 otwiera się w nowej karcie
  41. Conconi M, Halilaj E, Parenti-Castelli V, Crisco JJ. Is early osteoarthritis associated with differences in joint congruence? Journal of Biomechanics 2014; 47: 3787-3793. https://doi.org/10.1016/j.jbiomech. 2014.10.030 PMID: 25468667 otwiera się w nowej karcie
  42. Tummala S, Dam EB, Nielsen M. Automatic Quantification of Congruity from Knee MRI. Nielsen PMF et al. (eds.), Computational Biomechanics for Medicine: Deformation and Flow, Springer Science +Business Media New York 2012; 51-61. otwiera się w nowej karcie
  43. Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR. A Finite Element Model the Human Knee Joint for the Study of Tibio-Femoral Contact. Journal of Biomechanical Engineering 2002; 124: 273-80. PMID: 12071261
  44. Shirazi R, Shirazi-Adl A, Hurtig M. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. Journal of Biomechanics 2008; 41: 3340-8. https://doi.org/10.1016/j.jbiomech. 2008.09.033 PMID: 19022449 otwiera się w nowej karcie
  45. Bao HRC, Zhu D, Gong H, Gu GS. The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis. J Orthop Sci 2013; 18: 256-63. https://doi.org/ 10.1007/s00776-012-0334-5 PMID: 23160782 otwiera się w nowej karcie
  46. Kurosawa H, Fukubayashi T, Nakajima H. Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res. 1980; 149: 283-90. otwiera się w nowej karcie
  47. Burkhart TA, Andrews DM, Dunning CE. Finite element modelling mesh quality, energy balance and validation methods: a review with recommendations associated with the modelling of bone tissue. J Bio- mech. 2013; 46: 1477-88. https://doi.org/10.1016/j.jbiomech.2013.03.022 PMID: 23623312 otwiera się w nowej karcie
  48. Łuczkiewicz P, Daszkiewicz K, Chróścielewski J, Witkowski W, Kuik L. High meniscal slope angle as a risk factor for meniscal allograft extrusion. Medical Hypotheses 2017; 101: 48-51. https://doi.org/10. 1016/j.mehy.2017.02.003 PMID: 28351490 otwiera się w nowej karcie
  49. DeFrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 2006; 34: 1240-6. https://doi.org/10.1177/0363546506287299 PMID: 16636348 otwiera się w nowej karcie
  50. DeFrate LE, Sun H, Gill TJ, Rubash HE, Li G. In vivo tibiofemoral contact analysis using 3D MRI-based knee models. Journal of Biomechanics 2004; 37: 1499-1504. https://doi.org/10.1016/j.jbiomech.2004. 01.012 PMID: 15336924 otwiera się w nowej karcie
  51. Belvedere C, Leardini A, Gianninia S, Ensini A, Bianchi L, Catani F. Does medio-lateral motion occur in the normal knee? An in-vitro study in passive motion. Journal of Biomechanics 2011; 44: 877-84. https://doi.org/10.1016/j.jbiomech.2010.12.004 PMID: 21176906 otwiera się w nowej karcie
  52. Meakin JR, Shrive NG, Frank CB, Hart DA. Finite element analysis of the meniscus: the influence of geometry and material properties on its behaviour. Knee 2003; 10: 33-41. PMID: 12649024 otwiera się w nowej karcie
  53. Yao J, Funkenbusch PD, Snibbe J, Maloney M, Lerner AL. Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods. Journal of Biomechanical Engineering. 2006; 129: 399-408. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 155 razy

Publikacje, które mogą cię zainteresować

Meta Tagi