The occurrence and role of Nitrospira in nitrogen removal systems - Publikacja - MOST Wiedzy

Wyszukiwarka

The occurrence and role of Nitrospira in nitrogen removal systems

Abstrakt

Application of the modern microbial techniques changed the paradigm about the microorganisms performing nitrification. Numerous investigations recognized representatives of the genus Nitrospira as a key and predominant nitrite-oxidizing bacteria in biological nutrient removal systems, especially under low dissolved oxygen and substrate conditions. The recent discovery of Nitrospira capable of performing complete ammonia oxidation (comammox) raised a fundamental question about the actual role of Nitrospira in both nitrification steps. This review summarizes the current knowledge about morphological, physiological and genetic characteristics of the canonical and comammox Nitrospira. Potential implications of comammox for the functional aspects of nitrogen removal have been highlighted. The complex meta-analysis of literature data was applied to identify specific individual variables and their combined interactions on the Nitrospira abundance. In addition to dissolved oxygen and influent nitrogen concentrations, temperature and pH may play an important role in enhancing or suppressing the Nitrospira activity.

Cytowania

  • 1 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1 9

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 178 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
BIORESOURCE TECHNOLOGY nr 303,
ISSN: 0960-8524
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Mehrani M., Sobotka D., Kowal P., Ciesielski S., Mąkinia J.: The occurrence and role of Nitrospira in nitrogen removal systems// BIORESOURCE TECHNOLOGY -Vol. 303, (2020), s.122936-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.biortech.2020.122936
Bibliografia: test
  1. Akaboci, T.R., Gich, F., Ruscalleda, M., Balaguer, M.D., Colprim, J., 2018. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: reactor performance and bacterial community. Chem. Eng. J. 350, 192-200. otwiera się w nowej karcie
  2. Alawi, M., Off, S., Kaya, M., Spieck, E., 2009. Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ. Microbiol. Rep. 3, 184-190. otwiera się w nowej karcie
  3. Andrews, J.H., Harris, R.F., 1986. r-and K-Selection and Microbial Ecology. in: Advances in Microbial Ecology. Springer, US. Boston, MA. otwiera się w nowej karcie
  4. Annavajhala, M.K., Kapoor, V., Santo-Domingo, J., Chandran, K., 2018. Comammox functionality identified in diverse engineered biological wastewater treatment sys- tems. Environ. Sci. Technol. Lett. 5, 110-116. otwiera się w nowej karcie
  5. Anwar, K., Mohamad Said, K.A., Afizal, M., Amin, M., 2015. Overview on the Response Surface Methodology (RSM) in extraction processes. Appl. Sci. Proc. Eng. 2, 8-17.
  6. Bao, T., Chen, T., Tan, J., Wille, M.L., Zhu, D., Chen, D., Xi, Y., 2016. Synthesis and performance of iron oxide-based porous ceramsite in a biological aerated filter for the simultaneous removal of nitrogen and phosphorus from domestic wastewater. Sep. Purif. Technol. 167, 154-162. otwiera się w nowej karcie
  7. Bartosch, S., Hartwig, C., Spieck, E., Bock, E., 2002. Immunological detection of ni- trospira-like bacteria in various soils. Microb. Ecol. 43, 26-33. otwiera się w nowej karcie
  8. Bhatia, A., Singh, N.K., Bhando, T., Pathania, R., Kazmi, A.A., 2017. Effect of intermittent aeration on microbial diversity in an intermittently aerated IFAS reactor treating municipal wastewater: a field study. J. Environ. Sci. Heal. A. 52, 440-448. otwiera się w nowej karcie
  9. Blackburne, R., Vadivelu, V.M., Yuan, Z., Keller, J., 2007. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res. 41, 3033-3042. otwiera się w nowej karcie
  10. Blackburne, R., Yuan, Z., Keller, J., 2008. Partial nitrification to nitrite using low dis- solved oxygen concentration as the main selection factor. Biodegradation 19, 303-312. otwiera się w nowej karcie
  11. Camejo, P.Y., Santo Domingo, J., McMahon, K.D., Noguera, D.R., 2017. Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium "Candidatus Nitrospira nitrosa". mSystems 2, 1-16. otwiera się w nowej karcie
  12. Cao, Y., Kwok, B.H., van Loosdrecht, M., Daigger, G., Png, H.Y., Long, W.Y., Eng, O.K., 2018. The influence of dissolved oxygen on partial nitritation/anammox performance and microbial community of the 200,000 m3/d activated sludge process at the Changi water reclamation plant (2011 to 2016). Water Sci. Technol. 78, 634-643. otwiera się w nowej karcie
  13. Cao, Y., van Loosdrecht, M.C.M., Daigger, G.T., 2017. Mainstream partial ni- tritation-anammox in municipal wastewater treatment: status, bottlenecks, and fur- ther studies. Appl. Microbiol. Biot. 101, 1365-1383. otwiera się w nowej karcie
  14. Chang, M., Wang, Y., Pan, Y., Zhang, K., Lyu, L., Wang, M., Zhu, T., 2019. Nitrogen removal from wastewater via simultaneous nitrification and denitrification using a biological folded non-aerated filter. Bioresour. Technol. 289, 121696. otwiera się w nowej karcie
  15. Chao, Y., Mao, Y., Yu, K., Zhang, T., 2016. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Appl. Microbiol. Biot. 100, 8225-8237. otwiera się w nowej karcie
  16. Chen, M., Chen, Y., Dong, S., Lan, S., Zhou, H., Tan, Z., Li, X., 2018. Mixed nitrifying bacteria culture under different temperature dropping strategies: Nitrification per- formance, activity, and community. Chemosphere 195, 800-809. otwiera się w nowej karcie
  17. Costa, E., Pérez, J., Kreft, J.-U., 2006. Why is metabolic labour divided in nitrification? Trends Microbiol. 14, 213-219. otwiera się w nowej karcie
  18. Courtens, E.N.P., Spieck, E., Vilchez-Vargas, R., Bodé, S., Boeckx, P., Schouten, S., Jauregui, R., Pieper, D.H., Vlaeminck, S.E., Boon, N., 2016a. A robust nitrifying community in a bioreactor at 50°C opens up the path for thermophilic nitrogen removal. ISME J. 10, 2293. otwiera się w nowej karcie
  19. Courtens, E.N.P., Vandekerckhove, T., Prat, D., Vilchez-Vargas, R., Vital, M., Pieper, D.H., Meerbergen, K., Lievens, B., Boon, N., Vlaeminck, S.E., 2016b. Empowering a me- sophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers. Water Res. 92, 94-103. otwiera się w nowej karcie
  20. Crovadore, J., Soljan, V., Calmin, G., Chablais, R., Cochard, B., Lefort, F., 2018. Metagenomes and metatranscriptomes of activated sludge from a sewage plant, with or without aerobic granule enrichment. Genome Announc. 5, e00372-17. otwiera się w nowej karcie
  21. Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., Wagner, M., 2015. Complete nitrification by Nitrospira bacteria. Nature 528, 504-509. otwiera się w nowej karcie
  22. Daims, H., Lücker, S., Wagner, M., 2016. A New perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699-712. otwiera się w nowej karcie
  23. Daims, H., Nielsen, J.L., Nielsen, P.H., Schleifer, K.H., Wagner, M., 2001. In situ char- acterization of nitrospira-like nitrite-oxidizing bacteria active in wastewater treat- ment plants. Appl. Environ. Microbiol. 67, 5273-5284. otwiera się w nowej karcie
  24. Daims, H., Wagner, M., 2011. Situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. In: In: Klotz, M.G., Stein, L.Y. (Eds.), Methods in Enzymology, vol. 496. Academic Press, pp. 185-215. otwiera się w nowej karcie
  25. Daims, H., Wagner, M., 2018. Nitrospira. Trends Microbiol. 26, 462-463. otwiera się w nowej karcie
  26. De Clippeleir, H., Vlaeminck, S.E., De Wilde, F., Daeninck, K., Mosquera, M., Boeckx, P., Boon, N., 2013. One-stage partial nitritation/anammox at 15 C on pretreated sewage: feasibility demonstration at lab-scale. Appl. Microbial. Biot. 97, 10199-10210. otwiera się w nowej karcie
  27. De Clippeleir, H., Yan, X., Verstraete, W., Vlaeminck, S.E., 2011. OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times. Appl. Microbial. Biot. 90, 1537-1545. otwiera się w nowej karcie
  28. Dionisi, H.M., Layton, A.C., Harms, G., Gregory, I.R., Robinson, K.G., Sayler, G.S., 2002. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 6, 245-253. otwiera się w nowej karcie
  29. Dong, H., Wang, W., Song, Z., Dong, H., Wang, J., Sun, S., Zhang, Z., Ke, M., Zhang, Z., Wu, W.M., Zhang, G., Ma, J., 2017. A high-efficiency denitrification bioreactor for the treatment of acrylonitrile wastewater using waterborne polyurethane im- mobilized activated sludge. Bioresour. Technol. 239, 472-481. otwiera się w nowej karcie
  30. Du, S., Yu, D., Zhao, J., Wang, X., Bi, C., Zhen, J., Yuan, M., 2019. Achieving deep-level nutrient removal via combined denitrifying phosphorus removal and simultaneous partial nitrification-endogenous denitrification process in a single-sludge sequencing batch reactor. Bioresour. Technol. 289, 121690. otwiera się w nowej karcie
  31. Dworkin, M., Gutnick, D., 2012. Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiol. Rev. 36, 364-379. otwiera się w nowej karcie
  32. Edwards, T.A., Calica, N.A., Huang, D.A., Manoharan, N., Hou, W., Huang, L., Panosyan, H., Dong, H., Hedlund, B.P., 2013. Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia. FEMS Microbiol. Ecol. 85, 283-292. otwiera się w nowej karcie
  33. Ehrich, S., Behrens, D., Lebedeva, E., Ludwig, W., Bock, E., 1995. A new obligately he- molithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol. 164, 16-23. otwiera się w nowej karcie
  34. Feng, Y., Lu, X., Al-Hazmi, H., Makinia, J., 2017. An overview of the strategies for the deammonification process start-up and recovery after accidental operational failures. Rev. Environ. Sci. Biotechnol. 16, 541-568. otwiera się w nowej karcie
  35. Fitzgerald, C.M., Camejo, P., Oshlag, J.Z., Noguera, D.R., 2015. Ammonia-oxidizing mi- crobial communities in reactors with efficient nitrification at low-dissolved oxygen. Water Res. 70, 38-51. otwiera się w nowej karcie
  36. Gao, F., Li, Z., Chang, Q., Gao, M., She, Z., Wu, J., Jin, C., Zheng, D., Guo, L., Zhao, Y., Wang, S., 2018. Effect of florfenicol on performance and microbial community of a sequencing batch biofilm reactor treating mariculture wastewater. Environ. Technol. 39, 363-372. otwiera się w nowej karcie
  37. Gao, L., Zhou, W., Huang, J., He, S., Yan, Y., Zhu, W., Wu, S., Zhang, X., 2017. Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent. Bioresour. Technol. 234, 243-252. otwiera się w nowej karcie
  38. Gieseke, A., Purkhold, U., Wagner, M., Amann, R., Schramm, A., 2001. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing bio- film. Appl. Environ. Microbiol. 67, 1351-1362. otwiera się w nowej karcie
  39. Gilbert, E.M., Agrawal, S., Schwartz, T., Horn, H., Lackner, S., 2015. Comparing different reactor configurations for partial nitritation/anammox at low temperatures. Water Res. 81, 92-100. otwiera się w nowej karcie
  40. Gilbride, K., 2014. Molecular Methods for the Detection of Waterborne Pathogens in Waterborne Pathogens, Detection Methods and Applications. Elsevier B.V, London, UK. otwiera się w nowej karcie
  41. Gómez-Silván, C., Vílchez-Vargas, R., Arévalo, J., Gómez, M.A., González-López, J., Pieper, D.H., Rodelas, B., 2014. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor. Bioresour. Technol. 169, 126-133. otwiera się w nowej karcie
  42. Gruber-Dorninger, C., Pester, M., Kitzinger, K., Savio, D.F., Loy, A., Rattei, T., Wagner, M., Daims, H., 2014. Functionally relevant diversity of closely related Nitrospira in ac- tivated sludge. ISME J. 9, 643-655. otwiera się w nowej karcie
  43. Grunditz, C., Dalhammar, G., 2001. Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter. Water Res. 35, 433-440. otwiera się w nowej karcie
  44. Harms, G., Layton, A.C., Dionisi, H.M., Gregory, I.R., Garrett, V.M., Hawkins, S.A., Robinson, K.G., Sayler, G.S., 2003. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37, 343-351. otwiera się w nowej karcie
  45. He, S., Ding, L., Li, K., Hu, H., Ye, L., Ren, H., 2018. Comparative study of activated sludge with different individual nitrogen sources at a low temperature: effluent dissolved organic nitrogen compositions, metagenomic and microbial community. Bioresour. Technol. 247, 915-923. otwiera się w nowej karcie
  46. How, S.W., Lim, S.Y., Lim, P.B., Aris, A.M., Ngoh, G.C., Curtis, T.P., Chua, A.S.M., 2018. Low-dissolved-oxygen nitrification in tropical sewage: an investigation on potential, performance and functional microbial community. Water Sci. Technol. 77, 2274-2283. otwiera się w nowej karcie
  47. Hu, H.W., He, J.Z., 2017. Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle. J. Soils. Sediments 17, 2709-2717. otwiera się w nowej karcie
  48. Huang, H., Fan, X., Peng, C., Geng, J., Ding, L., Zhang, X., Ren, H., 2019. Linking mi- crobial respiratory activity with phospholipid fatty acid of biofilm from full-scale bioreactors. Bioresour. Technol. 272, 599-605. otwiera się w nowej karcie
  49. Huang, Z., Gedalanga, P.B., Asvapathanagul, P., Olson, B.H., 2010. Influence of physi- cochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Res. 44, 4351-4358. otwiera się w nowej karcie
  50. Isanta, E., Reino, C., Carrera, J., Pérez, J., 2015. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor. Water Res. 80, 149-158. otwiera się w nowej karcie
  51. Jia, F., Lai, C., Chen, L., Zeng, G., Huang, D., Liu, F., Li, X., Luo, P., Wu, J., Qin, L., Zhang, C., Cheng, M., Xu, P., 2017. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater. Chemosphere 185, 1-10. otwiera się w nowej karcie
  52. Joss, A., Salzgeber, D., Eugster, J., König, R., Rottermann, K., Burger, S., Siegrist, H., 2009. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR. Environ. Sci. Technol. 43, 5301-5306. otwiera się w nowej karcie
  53. Katsogiannis, A.N., Kornaros, M., Lyberatos, G., 2003. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs. Water Sci. Technol. 47, 53-59. otwiera się w nowej karcie
  54. Kim, D.J., Kim, S.H., 2006. Effect of nitrite concentration on the distribution and com- petition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics. Water Res. 40, 887-894. otwiera się w nowej karcie
  55. Kindaichi, T., Tsushima, I., Ogasawara, Y., Shimokawa, M., Ozaki, N., Satoh, H., Okabe, S., 2007. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Appl. Environ. Microbiol. 73, 4931-4939. otwiera się w nowej karcie
  56. Kinnunen, M., Gülay, A., Albrechtsen, H.J., Dechesne, A., Smets, B.F., 2017. Nitrotoga is selected over Nitrospira in newly assembled biofilm communities from a tap water source community at increased nitrite loading. Environ. Microbiol. 19, 2785-2793. otwiera się w nowej karcie
  57. Koch, H., van Kessel, M.A.H.J., Lücker, S., 2019. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177-189. otwiera się w nowej karcie
  58. Kouba, V., Vejmelkova, D., Proksova, E., Wiesinger, H., Concha, M., Dolejs, P., Hejnic, J., Jenicek, P., Bartacek, J., 2017. High-rate partial nitritation of municipal wastewater after psychrophilic anaerobic pretreatment. Environ. Sci. Technol. 51, 11029-11038. otwiera się w nowej karcie
  59. Kowalchuk, G.A., Stephen, J.R., 2001. Ammonia-oxidizing bacteria: a model for mole- cular microbial ecology. Annu. Rev. Microbiol. 55, 485-529. otwiera się w nowej karcie
  60. Law, Y., Matysik, A., Chen, X., Swa Thi, S., Ngoc Nguyen, T.Q., Qiu, G., Natarajan, G., Williams, R.B.H., Ni, B.J., Seviour, T.W., Wuertz, S., 2019. High dissolved oxygen selection against nitrospira sublineage I in full-scale activated sludge. Environ. Sci. Technol. 53, 8157-8166. otwiera się w nowej karcie
  61. Lawson, C.E., Lücker, S., 2018. Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr. Opin. Biotechnol. 50, 158-165. otwiera się w nowej karcie
  62. Lebedeva, E.V., Alawi, M., Maixner, F., Jozsa, P.-G., Daims, H., Spieck, E., 2008. Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite- oxidizing bacterium, 'Candidatus Nitrospira bockiana'. Int. J. Syst. Evol. Microbiol. 58, 242-250. otwiera się w nowej karcie
  63. Lebedeva, E.V., Off, S., Zumbrägel, S., Kruse, M., Shagzhina, A., Lücker, S., Maixner, F., Lipski, A., Daims, H., Spieck, E., 2011. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol. Ecol. 75, 195-204. otwiera się w nowej karcie
  64. Lenaerts, J., Lappin-Scott, H.M., Porter, J., 2007. Improved fluorescent in-situ hy- bridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry. Appl. Environ. Microbiol. 73, 2020-2023. otwiera się w nowej karcie
  65. Li, H., Zhang, Y., Yang, M., Kamagata, Y., 2013. Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Front. Environ. Sci. Eng. 7, 43-48. otwiera się w nowej karcie
  66. Li, J., Elliott, D., Nielsen, M., Healy, M.G., Zhan, X., 2011. Long-term partial nitrification in an intermittently aerated sequencing batch reactor (SBR) treating ammonium-rich wastewater under controlled oxygen-limited conditions. Biochem. Eng. J. 55, 215-222. otwiera się w nowej karcie
  67. Liang, K., Dai, Y., Wang, F., Liang, W., 2017. Seasonal variation of microbial community for the treatment of tail water in constructed wetland. Water Sci. Technol. 75, 2434-2442. otwiera się w nowej karcie
  68. Liang, Y., Li, D., Zhang, X., Zeng, H., Yang, Z., Cui, S., Zhang, J., 2014. Nitrogen removal and microbial characteristics in CANON biofilters fed with different ammonia levels. Bioresour. Technol. 171, 168-174. otwiera się w nowej karcie
  69. Liang, Y., Li, D., Zhang, X., Zeng, H., Yang, Z., Cui, S., Zhang, J., 2015. Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON re- actors. Bioresour. Technol. 175, 189-194. otwiera się w nowej karcie
  70. Lipski, A., Spieck, E., Makolla, A., Altendorf, K., 2001. Fatty acid profiles of nitrite-oxi- dizing bacteria reflect theirphylogenetic heterogeneity. Syst. Appl. Microbiol. 24, 377-384. otwiera się w nowej karcie
  71. Liu, G., Wang, J., 2013. Long-term low DO enriches and shifts nitrifier community in activated sludge. Environ. Sci. Technol. 47, 5109-5117. otwiera się w nowej karcie
  72. Liu, H., Yang, Y., Sun, H., Zhao, L., Liu, Y., 2018. Effect of tetracycline on microbial community structure associated with enhanced biological NandP removal in se- quencing batch reactor. Bioresour. Technol. 256, 414-420. otwiera się w nowej karcie
  73. Liu, J., Yi, N.K., Wang, S., Lu, L.J., Huang, X.F., 2016. Impact of plant species on spatial distribution of metabolic potential and functional diversity of microbial communities in a constructed wetland treating aquaculture wastewater. Ecol. Eng. 94, 564-573. otwiera się w nowej karcie
  74. Liu, W., Yang, D., Chen, W., Gu, X., 2017. High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low- strength wastewater at low temperatures. Bioresour. Technol. 231, 45-52. otwiera się w nowej karcie
  75. Lopez-Vazquez, C.M., Kubare, M., Saroj, D.P., Chikamba, C., Schwarz, J., Daims, H., Brdjanovic, D., 2014. Thermophilic biological nitrogen removal in industrial waste- water treatment. Appl. Microbiol. Biotechnol. 98, 945-956. otwiera się w nowej karcie
  76. Luo, H., Song, Y., Zhou, Y., Yang, L., Zhao, Y., 2017. Effects of rapid temperature rising on nitrogen removal and microbial community variation of anoxic/aerobic process for ABS resin wastewater treatment. Environ. Sci. Pollut. Res. 24, 5509-5520. otwiera się w nowej karcie
  77. Ma, B., Wang, S., Li, Z., Gao, M., Li, S., Guo, L., She, Z., Zhao, Y., Zheng, D., Jin, C., Wang, X., Gao, F., 2017. Magnetic Fe3O4 nanoparticles induced effects on performance and microbial community of activated sludge from a sequencing batch reactor under long-term exposure. Bioresour. Technol. 225, 377-385. otwiera się w nowej karcie
  78. Ma, F., Li, P., Zhang, X.Q., Sun, J.W., Wang, H.Y., Zhang, J., 2011. The influencing factors and the characteristics of simultaneous nitrification-denitrification in SBR. J. Harbin Inst. Tech. 43, 55-60.
  79. Ma, T., Zhao, C., Peng, Y., Liu, X., Zhou, L., 2009. Applying real-time control for reali- zation and stabilization of shortcut nitrification-denitrification in domestic water treatment. Water Sci. Technol. 59, 787-796. otwiera się w nowej karcie
  80. Malovanyy, A., Yang, J., Trela, J., Plaza, E., 2015. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment. Bioresour. Technol. 180, 144-153. otwiera się w nowej karcie
  81. Manser, R., Gujer, W., Siegrist, H., 2005. Consequences of mass transfer effects on the kinetics of nitrifiers. Water Res. 39, 4633-4642. otwiera się w nowej karcie
  82. Mardanov, A.V., Beletskii, A.V., Kallistova, A.Y., Kotlyarov, R.Y., Nikolaev, Y.A., Kevbrina, M.V., Agarev, A.M., Ravin, N.V., Pimenov, N.V., 2016. Dynamics of the composition of a microbial consortium during start-up of a single-stage constant flow laboratory nitritation/anammox setup. Microbiology 85, 681-692. otwiera się w nowej karcie
  83. Marks, C.R., Stevenson, B.S., Rudd, S., Lawson, P.A., 2012. Nitrospira-dominated biofilm within a thermal artesian spring: a case for nitrification-driven primary production in a geothermal setting. Geobiology 10, 457-466. otwiera się w nowej karcie
  84. Merbt, S.N., Stahl, D.A., Casamayor, E.O., Martí, E., Nicol, G.W., Prosser, J.I., 2012. Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS. Microbiol. Lett. 327, 41-46. otwiera się w nowej karcie
  85. Miao, Y., Peng, Y., Zhang, L., Li, B., Li, X., Wu, L., Wang, S., 2018. Partial nitrification- anammox (PNA) treating sewage with intermittent aeration mode: effect of influent C/N ratios. Chem. Eng. J. 334, 664-672. otwiera się w nowej karcie
  86. Miao, Y., Zhang, L., Yang, Y., Peng, Y., Li, B., Wang, S., Zhang, Q., 2016. Start-up of single-stage partial nitrification-anammox process treating low-strength swage and its restoration from nitrate accumulation. Bioresour. Technol. 218, 771-779. otwiera się w nowej karcie
  87. Mota, C., Head, M.A., Ridenoure, J.A., Cheng, J.J., de los Reyes, F.L., 2005. Effects of aeration cycles on nitrifying bacterial populations and nitrogen removal in inter- mittently aerated reactors. Appl. Environ. Microbiol. 71, 8565. otwiera się w nowej karcie
  88. Moussa, M.S., Sumanasekera, D.U., Ibrahim, S.H., Lubberding, H.J., Hooijmans, C.M., Gijzen, H.J., van Loosdrecht, M.C.M., 2006. Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of ni- trifiers. Water Res. 40, 1377-1388. otwiera się w nowej karcie
  89. Nemati, M., Hamidi, A., Maleki, Dizaj S., Javaherzadeh, V., Lotfipour, F., 2016. An overview on novel microbial determination methods in pharmaceutical and food quality control. Adv. Pharm. Bull. 6, 301-308. otwiera się w nowej karcie
  90. Nielsen, P.H., McMahon, K.D., 2014. Microbiology and microbial ecology of the activated sludge process. In: Jenkins, D., Wanner, J. (Eds.), Activated Sludge -100 Years and Counting. IWA Publishing, London, pp. 53-75.
  91. Nogueira, R., Melo, L.F., 2006. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors. Biotechnol. Bioeng. 95, 169-175. otwiera się w nowej karcie
  92. Nowka, B., Daims, H., Spieck, E., 2015. Comparison of oxidation kinetics of nitrite-oxi- dizing bacteria: nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81, 745-753. otwiera się w nowej karcie
  93. Okabe, S., Satoh, H., Watanabe, Y., 1999. In situ analysis of nitrifying biofilms as de- termined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65, 3182-3191. otwiera się w nowej karcie
  94. Ouyang, E., Lu, Y., Ouyang, J., Wang, L., Wang, X., 2017. Bacterial community analysis of anoxic/aeration (A/O) system in a combined process for gibberellin wastewater treatment. PloS One 12, e0186743. otwiera się w nowej karcie
  95. Palomo, A., Pedersen, A.G., Fowler, S.J., Dechesne, A., Sicheritz-Pontén, T., Smets, B.F., 2018. Comparative genomics sheds light on niche differentiation and the evolu- tionary history of comammox Nitrospira. ISME J. 12, 1779-1793. otwiera się w nowej karcie
  96. Park, N.D., 2008. Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels. J. Microbiol. Biotechnol. 18, 1470-1474. otwiera się w nowej karcie
  97. Park, M.-R., Park, H., Chandran, K., 2017. Molecular and kinetic characterization of planktonic Nitrospira spp. selectively enriched from activated sludge. Environ. Sci. Technol. 51, 2720-2728. otwiera się w nowej karcie
  98. Pedrouso, A., Val del Río, Á., Morales, N., Vázquez-Padín, J.R., Campos, J.L., Méndez, R., Mosquera-Corral, A., 2017. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions. Sep. Purif. Technol. 186, 55-62. otwiera się w nowej karcie
  99. Peng, Y., Zhu, G., 2006. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl. Microbial. Biotechnol. 73, 15-26. otwiera się w nowej karcie
  100. Persson, F., Sultana, R., Suarez, M., Hermansson, M., Plaza, E., Wilén, B.M., 2014. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures. Bioresour. Technol. 154, 267-273. otwiera się w nowej karcie
  101. Pester, M., Maixner, F., Berry, D., Rattei, T., Koch, H., Lücker, S., Nowka, B., Richter, A., Spieck, E., Lebedeva, E., Loy, A., Wagner, M., Daims, H., 2014. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for ni- trite-oxidizing Nitrospira. Environ. Microbiol. 16, 3055-3071. otwiera się w nowej karcie
  102. Pinto, A.J., Marcus, D.N., IjazBautista, U.Z., de lose Santos, Q.M., Dick, G.J., Raskin, L., 2016. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. Msphere 1 e00054-15. otwiera się w nowej karcie
  103. Pjevac, P., Schauberger, C., Poghosyan, L., Herbold, C.W., van Kessel, M.A.H.J., Daebeler, A., Steinberger, M., Jetten, M.S.M., Lücker, S., Wagner, M., Daims, H., 2017. AmoA- targeted polymerase chain reaction primers for the specific detection and quantifi- cation of comammox nitrospira in the environment. Front. Microbiol. 8, 1508. otwiera się w nowej karcie
  104. Pongsak, N., Supaporn, P., Tamao, K., Junko, M.M., Linda, A.F., 2017. Comparison of nitrogen removal and full-scale wastewater treatment plant characteristics in Thailand and Japan. Environ. Asia 10, 92-98. otwiera się w nowej karcie
  105. Poot, V., Hoekstra, M., Geleijnse, M.A., van Loosdrecht, M.C., Pérez, J., 2016. Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge. Water Res. 106, 518-530. otwiera się w nowej karcie
  106. Qian, F., Wang, J., Shen, Y., Wang, Y., Wang, S., Chen, X., 2017. Achieving high per- formance completely autotrophic nitrogen removal in a continuous granular sludge reactor. Biochem. Eng. J. 118, 97-104. otwiera się w nowej karcie
  107. Quartaroli, L., Silva, L.C.F., Silva, C.M., Lima, H.S., de Paula, S.O., de Oliveira, V.M., de Cássia, S., da Silva, M., Kasuya, M.C.M., de Sousa, M.P., Torres, A.P.R., Souza, R.S., Bassin, J.P., da Silva, C.C., 2017. Ammonium removal from high-salinity oilfield- produced water: assessing the microbial community dynamics at increasing salt concentrations. Appl. Microbiol. Biotechnol. 101, 859-870. otwiera się w nowej karcie
  108. Ramdhani, N., Kumari, S., Bux, F., 2013. Distribution of nitrosomonas-related ammonia- oxidizing bacteria and nitrobacter-related nitrite-oxidizing bacteria in two full-scale biological nutrient removal plants. Water Environ. Res. 85, 374-381. otwiera się w nowej karcie
  109. Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N., Chandler, R., 1983. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154, 1222-1226. otwiera się w nowej karcie
  110. Regmi, P., Miller, M.W., Holgate, B., Bunce, R., Park, H., Chandran, K., Wett, B., Murthy, S., Bott, C.B., 2014. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 57, 162-171. otwiera się w nowej karcie
  111. Rodrigues, V.A.J., Mac Conell, E.F.A., Dias, D.F.C., von Sperling, M., de Araújo, J.C., Vasel, J.L., 2017. Nitrogen removal in a shallow maturation pond with sludge ac- cumulated during 10 years of operation in Brazil. Water Sci. Technol. 76, 268-278. otwiera się w nowej karcie
  112. Roots, P., Wang, Y., Rosenthal, A., Griffin, J., Sabba, F., Petrovich, M., Yang, F., Kozak, J., Zhang, H., Wells, G., 2018. Comammox Nitrospira are the dominant ammonia oxi- dizers in a mainstream low dissolved oxygen nitrification reactor. Water Res. 157, 396-405. otwiera się w nowej karcie
  113. Salmonová, H., Bunešová, V., 2017. Methods of studying diversity of bacterial comu- nities: a review. Sci. Agric. Bohem. 48, 154-165. otwiera się w nowej karcie
  114. Santoro, A.E., 2016. The do-it-all nitrifier. Science 351, 342-343. otwiera się w nowej karcie
  115. Schramm, A., de Beer, D., van den Heuvel, J.C., Ottengraf, S., Amann, R., 1999. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl. Environ. Microbial. 65, 3690-3696. otwiera się w nowej karcie
  116. Silva, A.F., Antunes, S., Saunders, A., Freitas, F., Vieira, A., Galinha, C.F., Nielsen, P.H., Barreto Crespo, M.T., Carvalho, G., 2016. Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor. Appl. Microbiol. Biotechnol 100, 8507-8521. otwiera się w nowej karcie
  117. Simm, R.A., Mavinic, D.S., Ramey, W.D., 2006. A targeted study on possible free am- monia inhibition of Nitrospira. J. Environ. Eng. Sci. 5, 365-376. otwiera się w nowej karcie
  118. Soliman, M., Eldyasti, A., 2016. Development of partial nitrification as a first step of nitrite shunt process in a Sequential Batch Reactor (SBR) using Ammonium Oxidizing Bacteria (AOB) controlled by mixing regime. Bioresour. Technol. 221, 85-95. otwiera się w nowej karcie
  119. Song, H.L., Yang, X.L., Xia, M.Q., Chen, M., 2017. Co-metabolic degradation of steroid estrogens by heterotrophic bacteria and nitrifying bacteria in MBRs. J. Environ. Sci. Health A 52, 778-784. otwiera się w nowej karcie
  120. Sun, Z., Liu, C., Cao, Z., Chen, W., 2018. Study on regeneration effect and mechanism of high-frequency ultrasound on biological activated carbon. Ultrason. Sonochem. 44, 86-96. otwiera się w nowej karcie
  121. Tsukuda, M., Kitahara, K., Miyazaki, K., 2017. Comparative RNA function analysis reveals high functional similarity between distantly related bacterial 16 S rRNAs. Sci. Rep. 7, 9993. otwiera się w nowej karcie
  122. Tian, Q., Zhuang, L., Ong, S.K., Wang, Q., Wang, K., Xie, X., Zhu, Y., Li, F., 2017. Phosphorus (P) recovery coupled with increasing influent ammonium facilitated in- tracellular carbon source storage and simultaneous aerobic phosphorus and nitrogen removal. Water Res. 119, 267-275. otwiera się w nowej karcie
  123. Ushiki, N., Jinno, M., Fujitani, H., Suenaga, T., Terada, A., Tsuneda, S., 2017. Nitrite oxidation kinetics of two Nitrospira strains: the quest for competition and ecological niche differentiation. J. Biosci. Bioeng. 123, 581-589. otwiera się w nowej karcie
  124. van Kessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J.M., Kartal, B., Jetten, M.S.M., Lücker, S., 2015. Complete nitrification by a single mi- croorganism. Nature 528, 555. otwiera się w nowej karcie
  125. Varas, R., Guzmán-Fierro, V., Giustinianovich, E., Behar, J., Fernández, K., Roeckel, M., 2015. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor. Bioresour. Technol. 190, 345-351. otwiera się w nowej karcie
  126. Wagner, M., Loy, A., Nogueira, R., Purkhold, U., Lee, N., Daims, H., 2002. Microbial community composition and function in wastewater treatment plants. Antonie van Leeuwenhoek 81, 665-680. otwiera się w nowej karcie
  127. Wang, D., Wang, Q., Laloo, A., Xu, Y., Bond, P.L., Yuan, Z., 2016. Achieving stable ni- tritation for mainstream deammonification by combining free nitrous acid-based sludge treatment and oxygen limitation. Sci. Rep. 6, 25547. otwiera się w nowej karcie
  128. Wang, H., Einola, J., Heinonen, M., Kulomaa, M., Rintala, J., 2008. Group-specific quantification of methanotrophs in landfill gas-purged laboratory biofilters by tyr- amide signal amplification-fluorescence in situ hybridization. Bioresour. Technol. 99, 6426-6433. otwiera się w nowej karcie
  129. Wang, L., Li, T., 2015. Effects of seasonal temperature variation on nitrification, ana- mmox process, and bacteria involved in a pilot-scale constructed wetland. Environ. Sci. Pollut. Res. Int. 22, 3774-3783. otwiera się w nowej karcie
  130. Wang, M., Huang, G., Zhao, Z., Dang, C., Liu, W., Zheng, M., 2018. Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants. Bioresour. Technol. 270, 580-587. otwiera się w nowej karcie
  131. Wang, X., Gao, D., 2016. In-situ restoration of one-stage partial nitritation-anammox process deteriorated by nitrate build-up via elevated substrate levels. Sci. Rep. 6, 37500. otwiera się w nowej karcie
  132. Wang, X., Gao, D., 2018. The transformation from anammox granules to deammonifi- cation granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria. Bioresour. Technol. 250, 439-448. otwiera się w nowej karcie
  133. Wang, Y., Chen, J., Zhou, S., Wang, X., Chen, Y., Lin, X., Yan, Y., Ma, X., Wu, M., Han, H., 2017. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conver- sion related microorganisms in a CANON system in response to salt stress. Chem. Eng. J. 317, 512-521. otwiera się w nowej karcie
  134. Watari, T., Cuong Mai, T., Tanikawa, D., Hirakata, Y., Hatamoto, M., Syutsubo, K., Fukuda, M., Nguyen, N.B., Yamaguchi, T., 2016. Development of downflow hanging sponge (DHS) reactor as post treatment of existing combined anaerobic tank treating natural rubber processing wastewater. Water Sci. Technol. 75, 57-68. otwiera się w nowej karcie
  135. Watson, S.W., Bock, E., Valois, F.W., Waterbury, J.B., Schlosser, U., 1986. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1-7. otwiera się w nowej karcie
  136. Wegen, S., Nowka, B., Spieck, E., 2019. Low Temperature and neutral pH define "Candidatus Nitrotoga sp". as a competitive nitrite oxidizer in coculture with Nitrospira defluvii. Appl. Environ. Microbiol. 85, e02569-18. otwiera się w nowej karcie
  137. Winkler, M.K., Bassin, J.P., Kleerebezem, R., Sorokin, D.Y., van Loosdrecht, M.C., 2012. Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Appl. Microbiol. Biotechnol. 94, 1657-1666. otwiera się w nowej karcie
  138. Winkler, M.K.H., Boets, P., Hahne, B., Goethals, P., Volcke, E.I.P., 2017. Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration. Plos One 12, e0172785. otwiera się w nowej karcie
  139. Yang, B., Wang, J., Wang, J., Xu, H., Song, X., Wang, Y., Li, F., Liu, Y., Bai, J., 2018. Correlating microbial community structure with operational conditions in biological aerated filter reactor for efficient nitrogen removal of municipal wastewater. Bioresour. Technol. 250, 374-381. otwiera się w nowej karcie
  140. Yao, Q., Peng, D.C., 2017. Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. AMB Express 7, 25. otwiera się w nowej karcie
  141. Yim, G., Huimi Wang, H., Davies, J., 2006. The truth about antibiotics. Int. J. Med. Microbiol. 296, 163-170. otwiera się w nowej karcie
  142. Yu, C., Hou, L., Zheng, Y., Liu, M., Yin, G., Gao, J., Liu, C., Chang, Y., Han, P., 2018. Evidence for complete nitrification in enrichment culture of tidal sediments and di- versity analysis of clade a comammox Nitrospira in natural environments. Appl. Microbiol. Biotechnol. 102, 9363-9377. otwiera się w nowej karcie
  143. Yuan, Y., Liu, J., Ma, B., Liu, Y., Wang, B., Peng, Y., 2016. Improving municipal waste- water nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR). Bioresour. Technol. 222, 326-334. otwiera się w nowej karcie
  144. Zekker, I., Rikmann, E., Kroon, K., Mandel, A., Mihkelson, J., Tenno, T., Tenno, T., 2017. Ameliorating nitrite inhibition in a low-temperature nitritation-anammox MBBR using bacterial intermediate nitric oxide. Int. J. Environ. Sci. Technol. 14, 2343-2356. otwiera się w nowej karcie
  145. Zhang, Q., De Clippeleir, H., Su, C., Al-Omari, A., Wett, B., Vlaeminck, S.E., Murthy, S., 2016. Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization. Appl. Microbial. Biotechnol. 100, 5595-5606. otwiera się w nowej karcie
  146. Zhang, X., Zhou, Y., Ma, Y., Zhang, N., Zhao, S., Zhang, R., Zhang, J., Zhang, H., 2018. Effect of inorganic carbon concentration on the stability and nitrite-oxidizing bacteria community structure of the CANON process in a membrane bioreactor. Environ. Technol. 39, 457-463. otwiera się w nowej karcie
  147. Zhang, B., Guo, Y., Lens, P.N.L., Zhang, Z., Shi, W., Cui, F., Tay, J.H., 2019. Effect of light intensity on the characteristics of algal-bacterial granular sludge and the role of N- acyl-homoserine lactone in the granulation. Sci. Total Environ. 659, 372-383. otwiera się w nowej karcie
  148. Zheng, D., Chang, Q., Gao, M., She, Z., Jin, C., Guo, L., Zhao, Y., Wang, S., Wang, X., 2016a. Performance evaluation and microbial community of a sequencing batch biofilm reactor (SBBR) treating mariculture wastewater at different chlortetracycline concentrations. J. Environ. Manage. 182, 496-504. otwiera się w nowej karcie
  149. Zheng, M., Liu, Y.C., Xin, J., Zuo, H., Wang, C.W., Wu, W.M., 2016b. Ultrasonic treatment enhanced ammonia-oxidizing bacterial (AOB) activity for nitritation process. Environ. Sci. Technol. 50, 864-871. otwiera się w nowej karcie
  150. Zhou, X., Liu, X., Huang, S., Cui, B., Liu, Z., Yang, Q., 2018. Total inorganic nitrogen removal during the partial/complete nitrification for treating domestic wastewater: removal pathways and main influencing factors. Bioresour. Technol. 256, 285-294. otwiera się w nowej karcie
  151. Zubrowska-Sudol, M., Yang, J., Trela, J., Plaza, E., 2011. Evaluation of deammonification process performance at different aeration strategies. Water Sci. Technol. 63, 1168-1176. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 272 razy

Publikacje, które mogą cię zainteresować

Meta Tagi