Training of Deep Learning Models Using Synthetic Datasets - Publikacja - MOST Wiedzy

Wyszukiwarka

Training of Deep Learning Models Using Synthetic Datasets

Abstrakt

In order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning models for object detection and instance segmentation without being involved in the generation of real world datasets. In principle, we generate and annotate images with open-source software and 3D models that mimic real life objects. This approach allows us significantly reduce the effort required to gather pictures as well as automatize data tagging. It is worth noting that such synthetic datasets can be easily manipulated, e.g. to reduce the texture bias that often occurs in the resulting trained convolutional networks. Using the Mask R-CNN instance segmentation model as an example, we demonstrate that a network trained on the synthetic dataset of kitchen facilities shows remarkable performance on the validation dataset of real-world human-annotated photos. We show that our approach helps to bridge the domain gap between pre-trained models and their specific applications. In summary, such synthetic datasets help overcome the problem of acquiring and tagging thousands of images, while reducing the time and labor costs associated with the preparation of an appropriate real dataset

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja monograficzna
Typ:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Kowalczuk Z., Glinko J.: Training of Deep Learning Models Using Synthetic Datasets// Intelligent and Safe Computer Systems in Control and Diagnostics/ : , , s.141-152
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-031-16159-9_12
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 145 razy

Publikacje, które mogą cię zainteresować

Meta Tagi