Unsupervised Learning for Biomechanical Data Using Self-organising Maps, an Approach for Temporomandibular Joint Analysis
Abstrakt
We proposed to apply a specific machine learning technique called Self-Organising Maps (SOM) to identify similarities in the performance of muscles around human temporomandibular joint (TMJ). The performance was assessed by measuring muscle activation with the use of surface electromyography (sEMG). SOM algorithm used in the study was able to find clusters of data in sEMG test results. The SOM analysis was based on processed sEMG data collected when testing subjects performing four mandibular motions: opening, closing, protrusion and retrusion. Muscle activation of four TMJ muscles (masseter right, masseter left, temporalis right and temporalis left) were used as input variables for SOM algorithm. The results of the network are presented on U-matrix maps. These maps consist of formed groupings that correspond to similarities in data points that clustered together. The clustering implies similarity in muscle activation of different subjects. The results show that it is possible to cluster medical datasets with SOM algorithm in the analysis of full jaw motions, which may support the diagnostic process.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja monograficzna
- Typ:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Troka M., Wojnicz W., Szepietowska K., Lubowiecka I.: Unsupervised Learning for Biomechanical Data Using Self-organising Maps, an Approach for Temporomandibular Joint Analysis// Innovations in Biomedical Engineering 2023/ : , , s.233-240
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-031-52382-3_26
- Źródła finansowania:
-
- Zintegrowany Program Rozwoju Politechniki Gdańskiej WND -POWR.03.05.00-00.Z044/17
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 72 razy
Publikacje, które mogą cię zainteresować
Could thermal imaging supplement surface electromyography measurements for skeletal muscles?
- B. Zagrodny,
- W. Wojnicz,
- M. Ludwicki
- + 1 autorów