Using Statistical Methods to Estimate The Worst Case Response Time of Network Software Running on Indeterministic Hardware Platforms - Publikacja - MOST Wiedzy

Wyszukiwarka

Using Statistical Methods to Estimate The Worst Case Response Time of Network Software Running on Indeterministic Hardware Platforms

Abstrakt

In this paper we investigate whether the statistical Worst Case Execution Time (WCET) estimation methods devised for embedded platforms can be successfully applied to find the Worst Case Response Time (WCRT) of a network application running on a complex hardware platform such as a contemporary commercial off-the-shelf (COTS) system. Establishing easy-to-use timing validation techniques is crucial for real-time applications and meeting the Quality of Service requirements in general. We study nondeterminism of task execution times and exploit it by the application of redundant computations to achieve better fit of the model and lower WCRT bounds. We use many instances of the network-based RT application, expose them to identical streams of events and study correlation between response times and how it evolves over time. Experiments help us determine if states of separate CPUs will become synchronized which could affect the correlation. We also take a look on self-similarity in the distribution of response times. Test are conducted for many state sizes and with and without additional tasks on the tested system to examine the impact execution environment has on our results

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
Journal of Computer Science and Software Application nr 1, strony 42 - 62,
ISSN: 2377-0430
Język:
angielski
Rok wydania:
2014
Opis bibliograficzny:
Kiciński J., Nowicki K.: Using Statistical Methods to Estimate The Worst Case Response Time of Network Software Running on Indeterministic Hardware Platforms// Journal of Computer Science and Software Application. -Vol. 1., nr. 2 (2014), s.42-62
Weryfikacja:
Politechnika Gdańska

wyświetlono 87 razy

Publikacje, które mogą cię zainteresować

Meta Tagi