Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects
Abstrakt
In this study, in order to characterize the buried object via deep-learning-based surrogate modeling approach, 3-D full-wave electromagnetic simulations of a GPR model has been used. The task is to predict simultaneously and independent of each characteristic parameters of a buried object of several radii at different positions (depth and lateral position) in various dispersive subsurface media. This study has analyzed variable data structures (raw B-scans, extracted features, consecutive A-scans) with respect to computational cost and accuracy of surrogates. The usage of raw B-scan data and the applications for processing steps on B-scan profiles in the context of object characterization incur high computational cost so it can be a challenging issue. The proposed surrogate model referred to as the deep regression network (DRN) is utilized for time frequency spectrogram (TFS) of consecutive A-scans. DRN is developed with the main aim being computationally efficient (about 13 times acceleration) compared to conventional network models using B-scan images (2D data). DRN with TFS is favorably benchmarked to the state-of-the-art regression techniques. The experimental results obtained for the proposed model and second-best model, CNN-1D show mean absolute and relative error rates of 3.6mm, 11.8mm and 4.7%, 11.6% respectively. For the sake of supplementary verification under realistic scenarios, it is also applied for scenarios involving noisy data. Furthermore, the proposed surrogate modeling approach is validated using measurement data, which is indicative of suitability of the approach to handle physical measurements as data sources.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (5)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/s41598-024-65996-0
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Scientific Reports
nr 14,
ISSN: 2045-2322 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Yurt R., Torpi H., Kizilay A., Kozieł S., Mahouti P.: Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects// Scientific Reports -Vol. 14, (2024), s.1-22
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/s41598-024-65996-0
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 39 razy
Publikacje, które mogą cię zainteresować
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
- R. Yurt,
- H. Torpi,
- P. Mahouti
- + 2 autorów
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
- R. Yurt,
- H. Torpi,
- A. Kizilay
- + 3 autorów
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
- N. Calik,
- F. Gunes,
- S. Kozieł
- + 3 autorów
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
- S. Roshani,
- S. Kozieł,
- S. Yahya
- + 4 autorów