Abstrakt
The significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic (EM) simulation models. Surrogate-assisted methods offer acceleration, yet constructing reliable metamodels is hindered in higher-dimensional spaces and systems with highly nonlinear characteristics. This work suggests an innovative technique for global antenna optimization embedded within a machine-learning framework. It involves iteratively refined kriging surrogates and particle swarm optimization for generating infill points. The search process operates within a reduced-dimensionality region established through fast global sensitivity analysis. Domain confinement enables the creation of accurate behavioral models using limited training data, resulting in low CPU costs for optimization. Additional savings are realized by employing variable-resolution EM simulations, where low-fidelity models are utilized during the global search stage (including sensitivity analysis), and high-fidelity ones are reserved for final (gradient-based) tuning of antenna parameters. Comprehensive verification demonstrates the consistent performance of the proposed procedure, its superiority over benchmark techniques, and the relevance of the mechanisms embedded into the algorithm for enhancing search process reliability, design quality, and computational efficiency.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Scientific Reports
nr 14,
ISSN: 2045-2322 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Pietrenko-Dąbrowska A., Kozieł S.: Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis// Scientific Reports -Vol. 14, (2024), s.1-23
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/s41598-024-77367-w
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 1 razy