Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases - Publikacja - MOST Wiedzy

Wyszukiwarka

Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases

Abstrakt

Folate-targeted lipid nanostructures are promising strategies for the development of biocompatible drug delivery systems. The objective of this study was to evaluate the efficacy of drug delivery to cancer cells by folate-targeted lipid mesophases, cubosomes (CUB) and hexosomes (HEX), loaded with doxorubicin (DOX). Three cancer-derived cell lines (KB, HeLa, T98G) exhibiting different expressional levels of folate receptor protein (FR) were used. DOX-loaded folate-targeted CUB and HEX dispersions were characterized via small angle X-ray scattering and dynamic light scattering to assess their physicochemical properties. DOX release characteristics were evaluated by electrochemical methods and demonstrated structure-dependent release capabilities. A slow release rate was observed for hexosomes, while cubosomes offered more rapid drug transport. Analysis of the release kinetics revealed that the total amount of DOX released from cubosomes is linearly dependent on the square root of time, implying that the release process follows the Higuchi diffusion model. Assessment of drug uptake performed on cancerderived cell lines demonstrated that DOX accumulation in cancer cell depends not only on the release capability of the applied mesophase, but also, on the level of folate receptor protein present in the cancer cells. FR-functionalized CUB and HEX enabled faster drug delivery to cancer cells as a result of receptorligand interactions. In addition, doxorubicin encapsulated into FR-cubosomes demonstrated significantly improved anti-tumor activity promoting the necrosis of tumor cells, while DOX-loaded FA-hexosomes acted via induction of the apoptotic state. Overall, our data indicates that folate-modified formulations are promising drug delivery systems and can be considered as potential therapeutic tools in the targeted therapy of FR-positive tumors.

Cytowania

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 52 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
ELECTROCHIMICA ACTA nr 299, strony 1 - 11,
ISSN: 0013-4686
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Biernat J., Nazaruk E.: Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases// ELECTROCHIMICA ACTA -Vol. 299, (2019), s.1-11
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.electacta.2018.12.164
Bibliografia: test
  1. V. Luzzati, F. Husson, The structure of the liquid-crystalline phases of lipidwater systems, J. Cell Biol. 12 (1962) 207e219. https://doi.org/10.1083/jcb. 12.2.207. otwiera się w nowej karcie
  2. A. Angelova, B. Angelov, R. Mutafchieva, S. Lesieur, P. Couvreur, Self-Assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery, Acc. Chem. Res. 44 (2011) 147e156. https:// doi.org/10.1021/ar100120v. otwiera się w nowej karcie
  3. W.-K. Fong, R. Negrini, J.J. Vallooran, R. Mezzenga, B.J. Boyd, Responsive selfassembled nanostructured lipid systems for drug delivery and diagnostics, J. Colloid Interface Sci. 484 (2016) 320e339. https://doi.org/10.1016/j.jcis. 2016.08.077. otwiera się w nowej karcie
  4. S.J. Fraser, X. Mulet, A. Hawley, F. Separovic, A. Polyzos, Controlling nanostructure and lattice parameter of the inverse bicontinuous cubic phases in functionalised phytantriol dispersions, J. Colloid Interface Sci. 408 (2013) 117e124. https://doi.org/10.1016/j.jcis.2013.07.002. otwiera się w nowej karcie
  5. S. Phan, W.-K. Fong, N. Kirby, T. Hanley, B.J. Boyd, Evaluating the link between self-assembled mesophase structure and drug release, Int. J. Pharmacol. 421 (2011) 176e182. https://doi.org/10.1016/j.ijpharm.2011.09.022. otwiera się w nowej karcie
  6. R. Negrini, R. Mezzenga, PH-responsive lyotropic liquid crystals for controlled drug delivery, Langmuir 27 (2011) 5296e5303. https://doi.org/10.1021/ la200591u. otwiera się w nowej karcie
  7. B.J. Boyd, W.-K. Fong, Stimuli-responsive lipid-based self-assembled systems, Self-Assembled Supramol. Architect.: Lyotrop. Liquid Cryst. (2012) 257e288. https://doi.org/10.1002/9781118336632.ch9. otwiera się w nowej karcie
  8. R. Negrini, A. Sanchez-Ferrer, R. Mezzenga, In fluence of electrostatic interactions on the release of charged molecules from lipid cubic phases, Langmuir 30 (2014) 4280e4288. https://doi.org/10.1021/la5008439. otwiera się w nowej karcie
  9. J. Clogston, M. Caffrey, Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids, J. Contr. Release 107 (2005) 97e111. https://doi.org/10.1016/j.jconrel.2005.05.015. otwiera się w nowej karcie
  10. S. Phan, W.-K. Fong, N. Kirby, T. Hanley, B.J. Boyd, Evaluating the link between self-assembled mesophase structure and drug release, Int. J. Pharmacol. 421 (2011) 176e182. https://doi.org/10.1016/j.ijpharm.2011.09.022. otwiera się w nowej karcie
  11. W.-K. Fong, T. Hanley, B.J. Boyd, Stimuli responsive liquid crystals provide 'ondemand' drug delivery in vitro and in vivo, J. C ontr. Release 135 (2009) 218e226. https://doi.org/10.1016/j.jconrel.2009.01.009. otwiera się w nowej karcie
  12. J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of lipid bilayers and vesicles, BBA e Biomembranes 470 (1977) 185e201. https://doi. org/10.1016/0005-2736(77)90099-2. otwiera się w nowej karcie
  13. V. Cherezov, J. Clogston, M.Z. Papiz, M. Caffrey, Room to move: Crystallizing membrane proteins in swollen lipidic mesophases, J. Mol. Biol. 357 (2006) 1605e1618. https://doi.org/10.1016/j.jmb.2006.01.049. otwiera się w nowej karcie
  14. B. Angelov, A. Angelova, R. Mutafchieva, S. Lesieur, U. Vainio, V.M. Garamus, G.V. Jensen, J.S. Pedersen, SAXS investigation of a cubic to a sponge (L3) phase transition in self-assembled lipid nanocarriers, Phys. Chem. Chem. Phys. 13 (2011) 3073e3081. https://doi.org/10.1039/c0cp01029d. otwiera się w nowej karcie
  15. N. Alcaraz, Q. Liu, E. Hanssen, A. Johnston, B.J. Boyd, Clickable cubosomes for antibody-free drug targeting and imaging applications, Bioconjug. Chem. 29 (2018) 149e157. https://doi.org/10.1021/acs.bioconjchem.7b00659. otwiera się w nowej karcie
  16. J. Zhai, R.B. Luwor, N. Ahmed, R. Escalona, F.H. Tan, C. Fong, J. Ratcliffe, J.A. Scoble, C.J. Drummond, N. Tran, Paclitaxel -loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer, ACS Appl. Mater. Interfaces 10 (2018) 25174e25185. https://doi.org/10.1021/acsami.8b08125. otwiera się w nowej karcie
  17. S. Aleandri, D. Bandera, R. Mezzenga, E.M. Landau, Biotinylated cubosomes: a versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye, Langmuir 31 (2015) 12770e12776. https://doi. org/10.1021/acs.langmuir.5b03469. otwiera się w nowej karcie
  18. C. Caltagirone, A.M. Falchi, S. Lampis, V. Lippolis, V. Meli, M. Monduzzi, L. Prodi, J. Schmidt, M. Sgarzi, Y. Talmon, R. Bizzarri, S. Murgia, Cancer- celltargeted theranostic cubosomes, Langmuir 30 (2014) 6228e6236. https://doi. org/10.1021/la501332u. otwiera się w nowej karcie
  19. Y. Tian, J.C. Li, J.X. Zhu, N. Zhu, H.M. Zhang, L. Liang, L. Sun, Folic acid-targeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy, Med. Sci. Monit. 23 (2017) 2426e2435. https://doi.org/10.12659/ MSM.904683. otwiera się w nowej karcie
  20. V. Meli, C. Caltagirone, C. Sinico, F. Lai, A.M. Falchi, M. Monduzzi, M. ObiolsRabasa, G. Picci, A. Rosa, J. Schmidt, Y. Talmon, S. Murgia, Theranostic hexosomes for cancer treatments: an in vitro study, New J. Chem. 41 (2017) 1558e1565. https://doi.org/10.1039/c6nj03232j. otwiera się w nowej karcie
  21. E. Nazaruk, M. Szle˛zak, E. Gorecka, R. Bilewicz, Y.M. Osornio, P. Uebelhart, E.M. Landau, Design and assembly of pH-sensitive lipidic cubic phase matrices for drug release, Langmuir 30 (2014) 1383e1390. https://doi.org/10.1021/ la403694e. otwiera się w nowej karcie
  22. E. Nazaruk, P. Miszta, S. Filipek, E. Gorecka, E.M. Landau, R. Bilewicz, Lyotropic cubic phases for drug delivery: diffusion and sustained release from the mesophase evaluated by electrochemical methods, Langmuir 31 (2015) 12753e12761. https://doi.org/10.1021/acs.langmuir.5b03247. otwiera się w nowej karcie
  23. E. Nazaruk, A. Majkowska-Pilip, R. Bilewicz, Lipidic cubic-phase nanoparticlescubosomes for efficient drug delivery to cancer cells, ChemPlusChem 82 (2017) 570e575. https://doi.org/10.1002/cplu.201600534. otwiera się w nowej karcie
  24. E. Nazaruk, A. Majkowska-Pilip, M. Godlewska, M. Salamonczyk, D. Gawel, Electrochemical and biological characterization of lyotropic liquid crystalline phases - retardation of drug release from hexagonal mesophases, J. Electroanal. Chem. 813 (2018) 208e215. https://doi.org/10.1016/j.jelechem.2018.01.029. otwiera się w nowej karcie
  25. M. Colombo, L. Fiandra, G. Alessio, S. Mazzucchelli, M. Nebuloni, C. De Palma, K. Kantner, B. Pelaz, R. Rotem, F. Corsi, W.J. Parak, D. Prosperi, Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies, Nat. Commun. 7 (2016) 13818. https://doi.org/10.1038/ ncomms13818. otwiera się w nowej karcie
  26. C.V. Kulkarni, W. Wachter, G. Iglesias-Salto, S. Engelskirchen, S. Ahualli, Monoolein: a magic lipid? Phys. Chem. Chem. Phys. 13 (2011) 3004e3021. https://doi.org/10.1039/c0cp01539c. otwiera się w nowej karcie
  27. M. Godlewska, W. Krasuska, B. Czarnocka, Biochemical properties of thyroid peroxidase (TPO) expressed in human breast and mammary-derived cell lines, PLoS One 13 (2018), e0193624. https://doi.org/10.1371/journal.pone. 0193624. otwiera się w nowej karcie
  28. A. Majkowska-Pilip, M. Rius, F. Bruchertseifer, C. Apostolidis, M. Weis, M. Bonelli, M. Laurenza, L. Krolicki, A. Morgenstern, In vitro evaluation of 225 Ac- DOTA-substanceP for targeted alpha therapy of glioblastma multiforme, Chem. Biol. Drug Des. 92 (2018) 1344e1356. https://doi.org/10.1111/cbdd. 13199. otwiera się w nowej karcie
  29. N. Parker, M.J. Turk, E. Westrick, J.D. Lewis, P.S. Low, C.P. Leamon, Folate receptor expression in carcinomas and normal tis sues determined by a quantitative radioligand binding assay, Anal. Biochem. 338 (2005) 284e293. https://doi.org/10.1016/j.ab.2004.12.026. otwiera się w nowej karcie
  30. H. Chen, R. Ahn, J. Van den Bossche, D.H. Thompson, T.V. O'Halloran, Folatemediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide, Mol. Canc. Therapeut. 8 (2009) 1955e1963. https://doi.org/10.1158/1535-7163.MCT-09-0045. otwiera się w nowej karcie
  31. S. Gorle, M. Ariatti, M. Singh, Novel serum-tolerant lipoplexes target the folate receptor efficiently, Eur. J. Pharm. Sci. 59 (2014) 83e93. https://doi.org/10. 1016/j.ejps.2014.04.012. otwiera się w nowej karcie
  32. Y. Yang, F. An, Z. Liu, X. Zhang, M. Zhou, W. Li, X. Hao, C.S. Lee, X. Zhang, Ultrabright and ultrastable near -infrared dye nanoparticles for in vitro and in vivo bioimaging, Biomaterials 33 (2012) 7803e7809. https://doi.org/10.1016/j.biomaterials.2012.07.006. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 115 razy

Publikacje, które mogą cię zainteresować

Meta Tagi