Abstrakt
This work describes a bee detection system to monitor bee colony conditions. The detection process on video images has been divided into 3 stages: determining the regions of interest (ROI) for a given frame, scanning the frame in ROI areas using the DNN-CNN classifier, in order to obtain a confidence of bee occurrence in each window in any position and any scale, and form one detection window from a cloud of windows provided by a positive classification. The process has been performed by a method of weighted cluster analysis, which is the main contribution of this work. The paper also describes a process of building the detector, during which the main challenge was the selection of clustering parameters that gives the smallest generalization error. The results of the experiments show the advantage of the cluster analysis method over the greedy method and the advantage of the optimization of cluster analysis parameters over standard-heuristic parameter values, provided that a sufficiently long learning fragment of the movie is used to optimize the parameters.
Cytowania
-
1
CrossRef
-
0
Web of Science
-
2
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
- Copyright (Springer Nature Switzerland AG 2020)
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja monograficzna
- Typ:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Język:
- angielski
- Rok wydania:
- 2020
- Opis bibliograficzny:
- Szymański J., Dembski J.: Weighted Clustering for Bees Detection on Video Images// Computational Science – ICCS 2020/ : , 2020, s.453-466
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-030-50426-7_34
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 144 razy
Publikacje, które mogą cię zainteresować
Optimized Deep Learning Model for Flood Detection Using Satellite Images
- A. Stateczny,
- H. D. Praveena,
- R. H. Krishnappa
- + 2 autorów
Pedestrian detection in low-resolution thermal images
- A. Górska,
- P. Guzal,
- I. Namiotko
- + 3 autorów