Wpływ pH na ługowanie zwiercin łupkowych roztworami wodnymi - Publikacja - MOST Wiedzy

Wyszukiwarka

Wpływ pH na ługowanie zwiercin łupkowych roztworami wodnymi

Abstrakt

Zwierciny wytworzone podczas poszukiwania węglowodorów w formacjach łupkowych mogą zawierać metale ciężkie i radionuklidy. Mając na uwadze zagospodarowanie zwiercin, wykonano badanie ich ługowania metodą statyczną, stosując roztwory wodne o różnych pH regulowanych HNO3 i KOH. Charakterystykę chemiczną zwiercin z otworu z Basenu Bałtyckiego przeprowadzono metodą rentgenowskiej analizy fluorescencyjnej, natomiast efektywność ługowania pierwiastków głównych Ca, Mg, Na, Ba, K oraz śladowych Zn, Cu, Cr, Ni, Fe, Pb, Mn, Co w funkcji pH metodą spektrometrii absorpcji atomowej. Stwierdzono, że wyciągi wodne po ługowaniu zwiercin łupkowych zawierały śladowe ilości soli metali potencjalnie niebezpiecznych dla środowiska. W przypadku Cu wyługowanie wynosiło około 0,9% mas. dla pH w zakresie 3–6 (~5 mg/kg). Ługowanie się wybranych składników ze zwiercin łupkowych wykorzystano jako parametr oceny środowiskowej i przedyskutowano w kontekście klasyfikacji i dopuszczania odpadów do deponowania na składowiskach danego typu.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 171 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej, Wrocław 2017)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja monograficzna
Typ:
rozdział, artykuł w książce - dziele zbiorowym /podręczniku o zasięgu krajowym
Tytuł wydania:
Łupek miedzionośny strony 78 - 96
Język:
polski
Rok wydania:
2017
Opis bibliograficzny:
Piszcz-Karaś K., Łuczak J., Hupka J.: Wpływ pH na ługowanie zwiercin łupkowych roztworami wodnymi// Łupek miedzionośny/ ed. Kowalczuk Przemysław B., Drzymała Jan Wrocław: WGGG PW, 2017, s.78-96
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.5277/lupek1709
Bibliografia: test
  1. EPA Method 1313: Leaching Test (Liquid-Solid Partitioning as a Function of Extract pH) of Inorganic Species in Solid Materials Using a Parallel Batch Extraction Test, US Environmental Protection, 2009. AYDEMIR A., Comparison of Mississippian Barnett Shale, Northern-Central Texas, USA and Silurian Dadas Formation in Southeast Turkey. Journal of Petroleum Science and Engineering 2011, 80 (1), 81-93. otwiera się w nowej karcie
  2. BAI B., ELGMATI M., ZHANG H., WEI M., Rock characterization of Fayetteville shale gas plays. Fuel 2013, 105, 645 -652.
  3. BARBOT E., VIDIC N.S., GREGORY K.B., VIDIC R.D., Spatial and Temporal Correlation of Water Quality Parameters of Produced Waters from Devonian-Age Shale following Hydraulic Fracturing. Environmental Science & Technology 2013, 47 (6), 2562-2569. otwiera się w nowej karcie
  4. BRODIE K., RUTTER E., On the relationship between deformation and metamorphism, with special reference to the behavior of basic rocks. In Metamorphic reactions, 1985; pp 138-179. otwiera się w nowej karcie
  5. BOYER C., CLARK B., JOCHEN V., LEWIS R., MILLER I.C.K., Shale gas: A global resource. Oilfield review 2011, 23(3): 28-39.
  6. BRUMSACK H.-J. (2006) The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation, Palaeogeography, Palaeoclimatology, Palaeoecology 232(2): 344-361.
  7. BUCHER K., GRAPES R. (2011). Petrogenesis of metamorphic rocks, Springer Science & Business Media. otwiera się w nowej karcie
  8. CAPPUYNS V., SWENNEN R. (2008) The application of pHstat leaching tests to assess the pH- dependent release of trace metals from soils, sediments and waste materials, Journal of Hazardous Materials 158(1): 185-195. otwiera się w nowej karcie
  9. CHERMAK J.A., M. E. SCHREIBER (2014) Mineralogy and trace element geochemistry of gas shales in the United States: Environmental implications, International Journal of Coal Geology 126: 32-44. otwiera się w nowej karcie
  10. COMER J.B. (1991). Stratigraphic Analysis of the Upper Devonian Woodford Formation, Permian Basin, West Texas and Southeastern New Mexico, Bureau of Economic Geology, University of Texas at Austin. otwiera się w nowej karcie
  11. CONCAS A., C. ARDAU, A. CRISTINI, P. ZUDDAS, G. CAO (2006) Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site, Chemosphere 63(2): 244-253. otwiera się w nowej karcie
  12. DIJKSTRA J.J., J.C.L. MEEUSSEN, R.N.J. COMANS (2004) Leaching of Heavy Metals from Contaminated Soils: An Experimental and Modeling Study, Environmental Science & Technology 38(16): 4390-4395. otwiera się w nowej karcie
  13. DIX M., D. SPAIN, J. SANO, K. RATCLIFFE, S. HUGHES, N. CASARTA, D. BULLER (2010). Application of Whole-Rock Elemental Data in Shale-Gas Development: An Example from the Jurassic Haynesville Formation, EAGE Shale Workshop 2010.
  14. DURAND B. (1980). Kerogen: insoluble organic matter from sedimentary rocks, Editions technip.
  15. EIA (2013). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. Washington, Independent Statistics & Analysis.
  16. EPA (2010). Background Information for the Leaching Environmental Assessement Framework (LEAF) Test Methods, EPA/600/R -10/170.
  17. ETTENSOHN, F. R., L. S. BARRON (1981). Depositional model for the Devonian-Mississippian black- shale sequence of North America: a tectono-climatic approach, Kentucky Univ., Lexington (USA).
  18. Dept. of Geology.
  19. FINKELMAN, R.B. (1995). Modes of occurrence of environmentally-sensitive trace elements in coal. Environmental aspects of trace elements in coal, Springer: 24-50. otwiera się w nowej karcie
  20. FÄLLMAN A.M., J. HARTLÉN (1994). Leaching of slags and ashes -controlling factors in field experiments versus in laboratory tests. Studies in Environmental Science, Volume 60: 39-54. otwiera się w nowej karcie
  21. GILLMAN G., E. SUMPTER (1986) Modification to the compulsive exchange method for measuring exchange characteristics of soils, Soil Research 24(1): 61-66. otwiera się w nowej karcie
  22. HAMMES, U., G. FRÉBOURG (2012) Haynesville and Bossier mudrocks: A facies and sequence stratigraphic investigation, East Texas and Louisiana, USA, Marine and Petroleum Geology 31(1): 8- 26. otwiera się w nowej karcie
  23. HARRELL, J. A., M. E. BELSITO, A. KUMAR (1991) Radon hazards associated with outcrops of Ohio Shale in Ohio, Environmental Geology and Water Sciences 18(1): 17-26. otwiera się w nowej karcie
  24. HARRIS, N. B. (2013) Trace Elements and Basin Processes: Woodford Shale, Permian Basin, West Texas, AAPG 2013 Annual Convention and Exhibition, Pittsburgh, Pennsylvania. HEASMAN, L., H. VAN DER SLOOT, P. QUEVAUVILLER (1997). Harmonization of leaching/extraction tests, Elsevier Science. otwiera się w nowej karcie
  25. HETHERINGTON, C. J., I. M. VILLA (2007) Barium silicates of the Berisal Complex, Switzerland: A study in geochronology and rare-gas release systematics, Geochimica et Cosmochimica Acta 71(13): 3336-3347. otwiera się w nowej karcie
  26. HUANG, S.-C., F.-C. CHANG, S.-L. LO, M.-Y. LEE, C.-F. WANG, J.-D. LIN (2007), Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash, Journal of Hazardous Materials, 144(1): 52-58. otwiera się w nowej karcie
  27. HULETT, L., A. WEINBERGER (1980), Some etching studies of the microstructure and composition of large aluminosilicate particles in fly ash from coal-burning power plants, Environmental science and technology 14(8): 965-970. otwiera się w nowej karcie
  28. HUNG, M.-F., C.-L. HWANG (2007) Study of fine sediments for making lightweight aggregate." Waste Management & Research 25(5): 449-456. otwiera się w nowej karcie
  29. IFEADI, C. (2004). The treatment of drill cuttings using dispersion by chemical reaction (DCR). A paper prepared for presentation at the DPR Health, Environment (HSE) International Conference on Oil and Gas Industry in Port Harcourt, Nigeria.
  30. IZQUIERDO, M. , X. QUEROL (2012). Leaching behaviour of elements from coal combustion fly ash: An overview, International Journal of Coal Geology 94: 54-66. otwiera się w nowej karcie
  31. JAEGER, J. C., N. G. COOK, R. ZIMMERMAN (2009). Fundamentals of rock mechanics.
  32. JARVIE, D. M., R. J. HILL, T. E. RUBLE, R. M. POLLASTRO (2007) Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale- gas assessment, AAPG bulletin 91(4): 475-499. otwiera się w nowej karcie
  33. KABATA-PENDIAS, A. (2010). Trace elements in soils and plants, CRC press. otwiera się w nowej karcie
  34. KAZI, T.G., M.K. JAMALI, M.K. KAZI, M.K. ARAIN, M.K. AFRIDI, A. SIDDIQUI (2005) Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test, Analytical and Bioanalytical Chemistry 383(2): 297-304. otwiera się w nowej karcie
  35. KIDDER, D.L., R. KRISHNASWAMY, R.H. MAPES (2003) Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis, Chemical Geology 198(3): 335- 353. otwiera się w nowej karcie
  36. KLEIN, W. (1989) Mobility of Environmental Chemicals, Including Abiotic Degradation, Ecotoxicology and Climate. 9(5): 65-78.
  37. KOSSON, D. S., H. A. VAN DER SLOOT, F. SANCHEZ, A. C. GARRABRANTS (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials, Environmental Engineering Science 19(3): 159-204. otwiera się w nowej karcie
  38. KRAUSKOPF, K. B., D. K. BIRD (1967), Introduction to geochemistry, McGraw-Hill New York.
  39. LANDIS, E. R. (1962) Uranium and other trace elements in Devonian and Mississippian black shales in the central midcontinent area, US, Geol. Surv., Bull.;(United States) 1107. otwiera się w nowej karcie
  40. LAVERGREN, U., M. E. ÅSTRÖM, B. BERGBÄCK, H. HOLMSTRÖM (2009) Mobility of trace elements in black shale assessed by leaching tests and sequential chemical extraction, Geochemistry: Exploration, Environment, Analysis 9(1): 71-79. otwiera się w nowej karcie
  41. LI, M., C. WEI, G. FAN, C. LI, Z. DENG, X. LI (2009) Extraction of vanadium from black shale using pressure acid leaching, Hydrometallurgy 98(3): 308-313. otwiera się w nowej karcie
  42. LIU, X., F. J. MILLERO (2002) The solubility of iron in seawater, Marine Chemistry 77(1): 43-54. otwiera się w nowej karcie
  43. MANTIS, I., D. VOUTSA, C. SAMARA (2005) Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods, Ecotoxicology and Environmental Safety 62(3): 397-407. otwiera się w nowej karcie
  44. MARCINKOWSKI, B., E. MYCIELSKA-DOWGIAŁŁO (2013) Heavy-mineral analysis in Polish investigations of Quaternary deposits: a review, Geologos 19(1-2): 5-23. otwiera się w nowej karcie
  45. MARTINEZ, C.E., M.B. MCBRIDE (1998) Solubility of Cd 2+ , Cu 2+ , Pb 2+ and Zn 2+ in aged copre- cipitates with amorphous iron hydroxides, Environmental science & technology 32(6): 743-748. otwiera się w nowej karcie
  46. METWALLY, Y.M., E.M. CHESNOKOV (2012) Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale, Applied Clay Science 55: 138-150. otwiera się w nowej karcie
  47. MOHAMED, A.-M.O., H.E. ANTIA (1998) Geoenvironmental engineering, Elsevier. otwiera się w nowej karcie
  48. ONUOHA, I.E., H.I. BILGESU, S. AMERI (2011). Study of Drilling Fluid Additives and Their Impact on Smectite Inhibition, Marcellus Shale Inhibition, and Filtration and Rheological Properties of Bentonite Based Drilling Fluids, SPE Eastern Regional Meeting. otwiera się w nowej karcie
  49. ORTH, C.J., L.R. QUINTANA, J.S. GILMORE, R.C. GRAYSON, E.H. WESTERGAARD (1986) Trace-element anomalies at the Mississippian/Pennsylvanian boundary in Oklahoma and Texas, Geology 14(12): 986-990. otwiera się w nowej karcie
  50. PISZCZ-KARAŚ, K., J. ŁUCZAK, J. HUPKA (2014) Mobility of shale drill cuttings constituents, Physicochem. Probl. Miner. Process 50(2): 795-810. otwiera się w nowej karcie
  51. PLISZCZYŃSKA, K. (2013) Poszukiwanie i rozpoznawanie niekonwencjonalnych złóż węglowodorów- stan prac i działania Ministerstwa Środowiska, Prz. Geol 61(6): 334-337.
  52. POPRAWA, P. (2010) Potencjał występowania złóż gazu ziemnego w łupkach dolnego paleozoiku w basenie bałtyckim i lubelsko-podlaskim, Przegląd Geologiczny 58(3): 226-249.
  53. POPRAWA, P. (2010) System węglowodorowy z gazem ziemnym w łupkach-północnoamerykańskie doświadczenia i europejskie perspektywy, Przegląd Geologiczny 58(3): 216-225. otwiera się w nowej karcie
  54. QUEROL, X., J. C. UMAÑA, A. ALASTUEY, C. AYORA, A. LOPEZ-SOLER, F. PLANA (2001) Extraction of soluble major and trace elements from fly ash in open and closed leaching systems, Fuel 80(6): 801-813. otwiera się w nowej karcie
  55. RADER, L. F., F. S. GRIMALDI (1961) Chemical analyses for selected minor elements in Pierre shale, US Government Printing Office. otwiera się w nowej karcie
  56. RIPLEY, E.M., N.R. SHAFFER, M.S. GILSTRAP (1990) Distribution and geochemical characteristics of metal enrichment in the New Albany Shale (Devonian-Mississippian), Indiana, Economic Geology 85(8): 1790-1807. otwiera się w nowej karcie
  57. ROBL, T., A. BLAND, L. BURRON, D. KOPPENAAL (1983) Geochemistry of oil shales in eastern Kentucky, Am. Chem. Soc., Div. Pet. Chem., Prepr.;(United States) 28(CONF-830303-). otwiera się w nowej karcie
  58. ROGALA, A., K. KSIEZNAK, J. KRZYSIEK, J. HUPKA (2014) Carbon dioxide sequestration during shale gas recovery, Physicochem. Probl. Miner. Process 50(2): 681-692.
  59. ROSSEINSKY, D. (1958) The solubilities of sparingly soluble salts in water. Part 5.-The solubility of barium sulphate at 25°C , Transactions of the Faraday Society 54: 116-118. otwiera się w nowej karcie
  60. RUPPERT, L., R. FINKELMAN, E. BOTI, M. MILOSAVLJEVIC, S. TEWALT, N. SIMON, F. DULONG (1996) Origin and significance of high nickel and chromium concentrations in Pliocene lignite of the Kosovo Basin, Serbia, International journal of coal geology 29(4): 235-258. otwiera się w nowej karcie
  61. RYKA, W., A. MALISZEWSKA (1991) Słownik petrograficzny, Wydawnictwa Geologiczne.
  62. SAHUQUILLO, A., A. RIGOL, G. RAURET (2003) Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments, TrAC Trends in Analytical Chemistry 22(3): 152-159. otwiera się w nowej karcie
  63. SCHIEBER, J. (1995) Anomalous iron distribution in shales as a manifestation of "non-clastic iron" supply to sedimentary basins: relevance for pyritic shales, base-metal mineralization, and oolitic ironstone deposits, Mineralium Deposita 30(3-4): 294-302. otwiera się w nowej karcie
  64. SCHUMACHER B.A. (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments, National ESD, ed.: EPA. otwiera się w nowej karcie
  65. SHARMA S. (2014) Evaluating Leachability of Residual Solids Generated from Unconventional Shale Gas Production Operations in Marcellus Shale, Virginia Tech.
  66. SHKOLNIK Y.S., A. SHAKUROV, M. MANDEl (2012) New technology and equipment for recycling slag melts, Metallurgist 55(9): 724-726. otwiera się w nowej karcie
  67. SMITH K.S. (2007). Strategies to predict metal mobility in surficial mining environments. Reviews in Engineering Geology 17: 25-45. otwiera się w nowej karcie
  68. SONIBARE O.O., D.E. JACOB, C.R. WARD, S.F. FOLEY (2011) Mineral and trace element composition of the Lokpanta oil shales in the Lower Benue Trough, Nigeria, Fuel 90(9): 2843-2849. otwiera się w nowej karcie
  69. SUN B., F.J. ZHAO, E. LOMBI, S.P. MCGRATH (2001) Leaching of heavy metals from contaminated soils using EDTA, Environmental Pollution 113(2): 111-120.
  70. TORRAS J., I. BUJ, M. ROVIRA, J. DE PABLO (2011) Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements, Journal of Hazardous Materials 186(2-3): 1954-1960. otwiera się w nowej karcie
  71. TUTTLE M. L., G. N. BREIT, M. B. GOLDHABER (2009) Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements, Applied Geochemistry 24(8): 1565-1578. otwiera się w nowej karcie
  72. UGURLU A. (2004) Leaching characteristics of fly ash, Environmental Geology 46(6): 890-895. otwiera się w nowej karcie
  73. VIJAY R., T.A. SIHORWALA (2003) Identification and Leaching Characteristics of Sludge Generated from Metal Pickling and Electroplating Industries by Toxicity Characteristics Leaching Procedure (TCLP), Environmental Monitoring and Assessment 84(3): 193-202.
  74. YU C., U. LAVERGREN, P. PELTOLA, H. DRAKE, B. BERGBÄCK, M. E. ÅSTRÖM (2014) Retention and transport of arsenic, uranium and nickel in a black shale setting revealed by a long- term humidity cell test and sequential chemical extractions, Chemical Geology 363(0): 134-144.
  75. ZHU Y., E. LIU, A. MARTINEZ, M. A. PAYNE, C. E. HARRIS (2011) Understanding geophysical responses of shale-gas plays, The Leading Edge 30(3): 332-338.
  76. ZOU C., D. DONG, S. WANG, J. LI, X. LI, Y. WANG, D. LI, K. CHENG (2010) Geological characteristics and resource potential of shale gas in China, Petroleum Exploration and Development 37(6): 641-653.
Weryfikacja:
Politechnika Gdańska

wyświetlono 178 razy

Publikacje, które mogą cię zainteresować

Meta Tagi