Filtry
wszystkich: 1
Najlepsze wyniki w katalogu: Potencjał Badawczy Pokaż wszystkie wyniki (1)
Wyniki wyszukiwania dla: MOBILENETV2
-
Architektura Systemów Komputerowych
Potencjał BadawczyGłówną tematyką badawczą podejmowaną w Katedrze jest rozwój architektury aplikacji i systemów komputerowych, w szczególności aplikacji i systemów równoległych i rozproszonych. "Architecture starts when you carefully put two bricks together" - stwierdza niemiecki architekt Ludwig Mies von der Rohe. W przypadku systemów komputerowych dotyczy to nie cegieł, a modułów sprzętowych lub programowych. Przez architekturę systemu komputerowego...
Pozostałe wyniki Pokaż wszystkie wyniki (3)
Wyniki wyszukiwania dla: MOBILENETV2
-
Mobilenet-V2 Enhanced Parkinson's Disease Prediction with Hybrid Data Integration
PublikacjaThis study investigates the role of deep learning models, particularly MobileNet-v2, in Parkinson's Disease (PD) detection through handwriting spiral analysis. Handwriting difficulties often signal early signs of PD, necessitating early detection tools due to potential impacts on patients' work capacities. The study utilizes a three-fold approach, including data augmentation, algorithm development for simulated PD image datasets,...
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublikacjaIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
Assessing the attractiveness of human face based on machine learning
PublikacjaThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...