Abstrakt
The work proposes a probabilistic-driven framework for enhanced corrosion estimation of ship structural components using Bayesian inference and limited measurement data. The new approach for modelling measurement uncertainty is proposed based on the results of previous corrosion tests that incorporate the non-uniform character of the corroded surface of structural components. The proposed framework's basic features are outlined, and the detailed algorithm is presented. Further, the proposed framework is validated by comparison with the classical statistical approach and mass measurements, considering previous experimental work results. Notably, the impact of the number of measuring points is investigated, and the accuracy index is proposed to identify the optimum number of measurements. The developed framework has a significant advantage over the classical approach since measuring uncertainty is incorporated. Additionally, the confidence intervals of both mean value corrosion depth and standard deviation could be gathered due to the probabilistic character of the framework. Thus, the presented approach can potentially be used in the structural health monitoring of ship structural components and reliability analysis.
Cytowania
-
2
CrossRef
-
0
Web of Science
-
4
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ress.2023.109721
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
RELIABILITY ENGINEERING & SYSTEM SAFETY
nr 242,
ISSN: 0951-8320 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Wołoszyk K., Garbatov Y.: A probabilistic-driven framework for enhanced corrosion estimation of ship structural components// RELIABILITY ENGINEERING & SYSTEM SAFETY -,iss. 242 (2024), s.109721-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ress.2023.109721
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 267 razy