Chromatographic and Spectroscopic Identification and Recognition of Natural Dyes, Uncommon Dyestuff Components, and Mordants: Case Study of a 16th Century Carpet with Chintamani Motifs - Publikacja - MOST Wiedzy

Wyszukiwarka

Chromatographic and Spectroscopic Identification and Recognition of Natural Dyes, Uncommon Dyestuff Components, and Mordants: Case Study of a 16th Century Carpet with Chintamani Motifs

Abstrakt

A multi-tool analytical practice was used for the characterisation of a 16th century carpet manufactured in Cairo. A mild extraction method with hydrofluoric acid has been evaluated in order to isolate intact flavonoids and their glycosides, anthraquinones, tannins, and indigoids from fibre samples. High-performance liquid chromatography coupled to spectroscopic and mass spectrometric detectors was used for the identification of possible marker compounds with special attention paid to natural dyes present in the historical samples. Weld, young fustic, and soluble redwood dye were identified as the dye sources in yellow thread samples. Based on the developed method, it was possible to establish that red fibres were coloured with lac dye, whereas green fibre shades were obtained with indigo and weld. Tannin-containing plant material in combination with indigo and weld were used to obtain the brown hue of the thread. Hyphenation of high-performance liquid chromatography (HPLC) with quadrupole time-of-flight mass spectrometry (QTOF MS) and triple-quadrupole mass spectrometry (QqQ MS) enabled us to recognise four uncommon and thus-far unknown dye components that were also found in the historical samples. These compounds probably represent a unique fingerprint of dyed threads manufactured in a Turkish workshop. Scanning electron microscopy with energy-dispersive X-ray detector (SEM-EDS) and Fourier transform infrared spectroscopy (FT-IR) were used for the identification and characterisation of substrates and mordants present in the historical carpet. Carbon and oxygen were detected in large quantities as a part of the wool protein. The presence of aluminium, iron, and calcium indicated their usage as mordants. Trace amounts of copper, silica, and magnesium might originate from the contaminants. FT-IR analysis showed bands characteristic for woollen fibres and SEM micrographs defined the structure of the wool.

Cytowania

  • 2 9

    CrossRef

  • 0

    Web of Science

  • 2 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 72 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
MOLECULES nr 23, wydanie 2, strony 1 - 15,
ISSN: 1420-3049
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Otłowska O., Ślebioda M., Kot-Wasik A., Karczewski J., Śliwka-Kaszyńska M.: Chromatographic and Spectroscopic Identification and Recognition of Natural Dyes, Uncommon Dyestuff Components, and Mordants: Case Study of a 16th Century Carpet with Chintamani Motifs// MOLECULES. -Vol. 23, iss. 2 (2018), s.1-15
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/molecules23020339
Bibliografia: test
  1. Pozzi, F.; Zaleski, S.; Casadio, F.; Leona, M.; Lombardi, J.R.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy: Using nanoparticles to detect trace amounts of colorants in works of art. In Nanoscience and Cultural Heritage; Dillmann, P., Bellot-Gurlet, L., Nenner, I., Eds.; Atlantis Press: Amsterdam, The Netherlands, 2016; pp. 161-204, ISBN 9789462391970. otwiera się w nowej karcie
  2. Sultan, S.; Kareem, K.; He, L.; Simon, S. Identification of the authenticity of pigments in ancient polychromed artworks of China. Anal. Methods 2015, 9, 814-825. [CrossRef] otwiera się w nowej karcie
  3. Degano, I.; Biesaga, M.; Colombini, M.P.; Trojanowicz, M. Historical and archaeological textiles: An insight on degradation products of wool and silk yarns. J. Chromatogr. A 2011, 1218, 5837-5847. [CrossRef] [PubMed] otwiera się w nowej karcie
  4. Carter, S.; Fisher, A.; Gibson, B.; Marshall, J.; Russelle, B.; Whitesidef, I. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. J. Anal. At. Spectrom. 2017, 32, 2068-2117. [CrossRef] otwiera się w nowej karcie
  5. Madariaga, J.M. Analytical chemistry in the field of cultural heritage. Anal. Methods 2015, 7, 4848-4876. [CrossRef] otwiera się w nowej karcie
  6. Cardell, C.; Guerra, I. An overview of emerging hyphenated SEM-EDX and Raman spectroscopy systems: Applications in life, environmental and materials sciences. Trends Anal. Chem. 2016, 77, 156-166. [CrossRef] otwiera się w nowej karcie
  7. Wouters, J. High performance liquid chromatography of anthraquinones: Analysis of plant and insect extracts and dyed textiles. Stud. Conserv. 1985, 30, 119-128. [CrossRef] otwiera się w nowej karcie
  8. Halpine, S.M. An improved dye and lake pigment analysis method for high-performance liquid chromatography and diode-array detector. Stud. Conserv. 1996, 41, 76-94. [CrossRef] otwiera się w nowej karcie
  9. Pauk, V.; Bartak, P.; Lemr, K. Characterization of natural organic colorants in historical and art objects by high-performance liquid chromatography. J. Sep. Sci. 2014, 37, 3393-3410. [CrossRef] [PubMed] otwiera się w nowej karcie
  10. Walton, P.; Taylor, G. The characterization of dyes in textiles from archaeological excavations. Chromatogr. Anal. 1991, 17, 5-7.
  11. Taylor, G.W. Detection and identification of dyes on Anglo-Scandinavian textiles. Stud. Conserv. 1983, 28, 153-160. [CrossRef] otwiera się w nowej karcie
  12. Benkendorff, K.; Bremner, J.; Davis, A. Indole Derivatives from the Egg Masses of Muricid Molluscs. Molecules 2001, 6, 70-78. [CrossRef] otwiera się w nowej karcie
  13. Pawlak, K.; Puchalska, M.; Miszczak, A.; Rosłoniec, E.; Jarosz, M. Blue natural organic dyestuffs-From textile dyeing to mural painting. Separation and characterization of coloring matters present in elderberry, logwood and indigo. J. Mass Spectrom. 2006, 41, 613-622. [CrossRef] [PubMed] otwiera się w nowej karcie
  14. Mantzouris, D.; Karapanagiotis, I.; Panayiotou, C. Comparison of extraction methods for the analysis of Indigofera tinctoria and Carthamus tinctorius in textiles by high performance. Microchem. J. 2014, 115, 78-86. [CrossRef] otwiera się w nowej karcie
  15. Otłowska, O.;Ślebioda, M.; Wachowiak, M.;Śliwka-Kaszyńska, M. Identification and characterization of the Indian Yellow dyestuff and its degradation products in historical oil paint tube by liquid chromatography mass spectrometry. RSC Adv. 2015, 5, 48786-48792. [CrossRef] otwiera się w nowej karcie
  16. Sanyova, J.; Reisse, J. Development of a mild method for the extraction of anthraquinones from their aluminum complexes in madder lakes prior to HPLC analysis. J. Cult. Herit. 2006, 7, 229-235. [CrossRef] otwiera się w nowej karcie
  17. Otłowska, O.;Ślebioda, M.; Wachowiak, M.;Śliwka-Kaszyńska, M. A multi-analytical approach to the characterization of natural organic dyestuffs and inorganic substrates present in the 19th-century artistic oil paints manufactured by a French art materials supplier Richard Aines. Anal. Methods 2017, 9, 94-102. [CrossRef] otwiera się w nowej karcie
  18. Valianou, L.; Karapanagiotis, I.; Chryssoulakis, Y. Comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography. Anal. Bioanal. Chem. 2009, 395, 2175-2189. [CrossRef] [PubMed] otwiera się w nowej karcie
  19. Ticha, M.B.; Meksi, N.; Attia, H.E.; Haddar, W.; Guesmi, A.; Jannet, H.B.; Mhenni, M.F. Ultrasonic extraction of Parthenocissus quinquefolia colorants: Extract identification by HPLC-MS analysis and cleaner application on the phytodyeing of natural fibres. Dyes Pigment 2017, 141, 103-111. [CrossRef] otwiera się w nowej karcie
  20. Degano, I.; Tognotti, P.; Kunzelman, D.; Modugno, F. HPLC-DAD and HPLC-ESI-Q-ToF characterisation of early 20th century lake and organic pigments from Lefranc archives. Herit. Sci. 2017. [CrossRef] otwiera się w nowej karcie
  21. Papliaka, Z.E.; Konstanta, A.; Karapanagiotis, I.; Karadag, R.; Akyol, A.A.; Mantzouris, D.; Tsiamyrtzis, P. FTIR imaging and HPLC reveal ancient painting and dyeing techniques of molluskan purple. Archaeol. Anthropol. Sci. 2017, 9, 197-208. [CrossRef] otwiera się w nowej karcie
  22. Kramell, A.E.; Wertmann, P.; Hosner, D.; Kluge, R.; Oehler, F.; Wunderlich, C.H.; Tarasov, P.E.; Wagner, M.; Csuk, R. A multi-analytical techniques based approach to study the colorful clothes and accessories from mummies of Eastern Central Asia. J. Archaeol. Sci. Rep. 2016, 10, 464-473. [CrossRef] otwiera się w nowej karcie
  23. Peets, P.; Leitoa, I.; Pelt, J.; Vahur, S. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 175-181. [CrossRef] [PubMed] otwiera się w nowej karcie
  24. Akyuz, S.; Akyuz, T.; Cakan, B.; Basaran, S. Investigations of the historic textiles excavated from Ancient Ainos (Enez-Turkey) by multiple analytical techniques. J. Mol. Struct. 2014, 1073, 37-43. [CrossRef] otwiera się w nowej karcie
  25. Kakkar, P.; Madhan, B.; Shanmugamet, G. Extraction and characterization of keratin from bovine hoof: A potential material for biomedical applications. SpringerPlus 2014, 3, 596. [CrossRef] [PubMed] otwiera się w nowej karcie
  26. Joosten, I.; van Bommel, M.R.; Hofmann de Keijzer, R.; Reschreiter, H. Micro Analysis on Hallstatt Textiles: Colour and Condition. Microchim. Acta 2006, 155, 169-174. [CrossRef] otwiera się w nowej karcie
  27. Hofenk de Graaff, J.H. The colourful past. In Origins Chemistry and Identification of Natural Dyestuffs; Abegg Stiftung and Archetype Publications Ltd.: London, UK, 2004; ISBN 1873132131. otwiera się w nowej karcie
  28. Schweppe, H. Handbuch der Naturfarbstoffe. Vorkommen-Verwendung-Nachweis;
  29. Stobiecki, M.; Kachlicki, P.; Wojakowska, A.; Marczak, Ł. Application of LC/MS systems to structural characterization of flavonoid glycoconjugates. Phytochem. Lett. 2015, 11, 358-367. [CrossRef] otwiera się w nowej karcie
  30. Quin, Y.; Gao, B.; Shi, H.; Cao, J.; Yin, C.; Lu, W.; Yu, L.; Cheng, Z. Characterization of flavonol mono-, di-, tri- and tetra-O-glycosides by ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and its application for identification of flavonol glycosides in Viola tianschanica. J. Pharm. Biomed. Anal. 2017, 142, 113-124. [CrossRef] otwiera się w nowej karcie
  31. Moiteiro, C.; Gaspar, H.; Rodrigues, A.I.; Lopes, J.F.; Carnide, V. HPLC quantification of dye flavonoids in Reseda luteola L. from Portugal. J. Sep. Sci. 2008, 31, 3683-3687. [CrossRef] [PubMed] otwiera się w nowej karcie
  32. Marques, R.; Sousa, M.M.; Oliveira, M.C.; Melo, M.J. Characterization of weld (Reseda luteola L.) and spurge flax (Daphne gnidium L.) by high-performance liquid chromatography-diode array detection-mass spectrometry in Arraiolos historical textiles. J. Chromatogr. A 2009, 1216, 1395-1402. [CrossRef] [PubMed] otwiera się w nowej karcie
  33. March, R.E.; Levars, E.G.; Stadey, C.J.; Miao, X.S.; Zhao, X.; Metcalfe, C.D. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. Int. J. Mass Spectrom. 2006, 248, 61-85. [CrossRef] otwiera się w nowej karcie
  34. Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707-715. [CrossRef] otwiera się w nowej karcie
  35. Troalen, L.G.; Phillips, A.S.; Peggie, D.A.; Barran, P.E.; Hulme, A.N. Historical textile dyeing with Genista tinctoria L.: A comprehensive study by UPLC-MS/MS analysis. Anal. Methods 2014, 6, 8915-8923. [CrossRef] otwiera się w nowej karcie
  36. Valianou, L.; Stathopoulou, K.; Karapanagiotis, I.; Magiatis, P.; Pavlidou, E.; Skaltsounis, A.L.; Chryssoulakis, Y. Phytochemical analysis of young fustic (Cotinus coggygria heartwood) and identification of isolated colourants in historical textiles. Anal. Bioanal. Chem. 2009, 394, 871-882. [CrossRef] [PubMed] otwiera się w nowej karcie
  37. Guo, J.; Liu, D.; Nikolic, D.; Zhu, D.; Pezzuto, J.M.; van Breemen, R.B. In vitro metabolism of isoliquiritigenin by human liver microsomes. Drug Metab. Dispos. 2008, 36, 461-468. [CrossRef] [PubMed] otwiera się w nowej karcie
  38. Jin, M.J.; Kim, I.S.; Rehman, S.U.; Dong, M.S.; Na, C.S.; Yoo, H.H. A Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Quantitation of 10 Bioactive Components in Rhus verniciflua Extracts. J. Chromatogr. Sci. 2016, 54, 390-396. [CrossRef] [PubMed] otwiera się w nowej karcie
  39. Karapanagiotis, I.; Lakka, A.; Valianou, L.; Chryssoulakis, Y. High-performance liquid chromatographic determination of colouring matters in historical garments from the Holy Mountain of Athos. Microchim. Acta 2008, 160, 477-483. [CrossRef] otwiera się w nowej karcie
  40. Karapanagiotis, I.; Minopoulou, E.; Valianou, L.; Daniilia, S.; Chryssoulakis, Y. Investigation of the colourants used in icons of the Cretan School of iconography. Anal. Chim. Acta 2009, 647, 231-242. [CrossRef] [PubMed] otwiera się w nowej karcie
  41. Hulme, A.N.; McNab, H.; Peggie, D.A.; Quye, A. Negative ion electrospray mass spectrometry of neoflavonoids. Phytochemistry 2005, 66, 2766-2770. [CrossRef] [PubMed] otwiera się w nowej karcie
  42. Manhita, A.; Balcaend, L.; Vanhaecked, F.; Ferreira, T.; Candeiasa, A.; Dias, C.B. Unveiling the colour palette of Arraiolos carpets: Material study of carpets from the 17th to 19th century period by HPLC-DAD-MS and ICP-MS. J. Cult. Herit. 2014, 15, 292-299. [CrossRef] otwiera się w nowej karcie
  43. Santos, R.; Hallett, J.; Conceicao Oliveira, M.; Sousa, M.M.; Sarraguça, J.; Simmonds, M.S.J.; Nesbitt, M. HPLC-DAD-MS analysis of colorant and resinous components of lac-dye: A comparison between Kerria and Paratachardina genera. Dyes Pigment 2015, 118, 129-136. [CrossRef] otwiera się w nowej karcie
  44. Petroviciu, I.; Albu, F. Medvedovici, A. LC/MS and LC/MS/MS based protocol for identification of dyes in historic textiles. Microchem. J. 2010, 95, 247-254. [CrossRef] otwiera się w nowej karcie
  45. Rosenberg, E. Characterisation of historical organic dyestuffs by liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2008, 391, 33-57. [CrossRef] [PubMed] otwiera się w nowej karcie
  46. Szostek, B.; Orska-Gawrys, J.; Surowiec, I.; Trojanowicz, M. Investigation of natural dyes occurring in historical Coptic textiles by high-performance liquid chromatography with UV-Vis and mass spectrometric detection. J. Chromatogr. A 2003, 1012, 179-192. [CrossRef] otwiera się w nowej karcie
  47. Ferreira, E.S.B.; Hulme, A.M.; McNaby, H.; Quye, A. The natural constituents of historical textile dyes. Chem. Soc. Rev. 2004, 33, 329-336. [CrossRef] [PubMed] otwiera się w nowej karcie
  48. Petroviciu, I.; Vanden Berghe, I.; Cretu, I.; Albu, F.; Medvedovici, A. Identification of natural dyes in historical textiles from Romanian collections by LC-DAD and LC-MS (single stage and tandem MS). J. Cult. Herit. 2012, 13, 89-97. [CrossRef] otwiera się w nowej karcie
  49. Sample Availability: not available. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 153 razy

Publikacje, które mogą cię zainteresować

Meta Tagi