Improving Accuracy of Respiratory Rate Estimation by Restoring High Resolution Features With Transformers and Recursive Convolutional Models
Abstrakt
Non-contact evaluation of vital signs has been becoming increasingly important, especially in light of the COVID- 19 pandemic, which is causing the whole world to examine people’s interactions in public places at a scale never seen before. However, evaluating one’s vital signs can be a relatively complex procedure, which requires both time and physical contact between examiner and examinee. These re- quirements limit the number of people who can be efficiently checked, either due to the medical station throughput, pa- tients’ remote locations or the need for social distancing. This study is a first step to increasing the accuracy of com- puter vision-based respiratory rate estimation by transfer- ring texture information from images acquired in different domains. Experiments conducted with two deep neural net- work topologies, a recursive convolutional model and trans- formers, proved their robustness in the analyzed scenario by reducing estimation error by 50% compared to low resolu- tion sequences. All resources used in this research, including links to the dataset and code, have been made publicly available.
Autorzy (5)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
- Copyright (2021 Authors)
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- materiały konferencyjne indeksowane w Web of Science
- Język:
- angielski
- Rok wydania:
- 2021
- Opis bibliograficzny:
- Kwaśniewska A., Szankin M., Rumiński J., Sarah A., Gamba D..: Improving Accuracy of Respiratory Rate Estimation by Restoring High Resolution Features With Transformers and Recursive Convolutional Models, W: , 2021, ,.
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 111 razy
Publikacje, które mogą cię zainteresować
Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends
- I. Qureshi,
- J. Yan,
- Q. Abbas
- + 5 autorów