Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches - Publikacja - MOST Wiedzy

Wyszukiwarka

Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches

Abstrakt

Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass sources. The study argues that white-box models, which are more open and comprehensible, are crucial for biochar prediction in light of the increasing suspicion of black-box models. Accurate forecasts are guaranteed by these explainable AI systems, which also give detailed explanations of the mechanisms generating the outcomes. For prediction models to gain confidence and for biochar production processes to enable informed decision-making, there must be an emphasis on interpretability and openness. The paper comprehensively synthesizes the most critical features of biochar prediction by a rigorous assessment of current literature and relies on the authors’ own experience. Explainable machine learning techniques encourage ecologically responsible decision-making by improving forecast accuracy and transparency. Biochar is positioned as a crucial participant in solving global concerns connected to soil health and climate change, and this ultimately contributes to the wider aims of environmental sustainability and renewable energy consumption.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Autorzy (9)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
International Journal of Green Energy nr 21, strony 2771 - 2798,
ISSN: 1543-5075
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Nguyen V. G., Sharma P., Ağbulut Ü., Le H. S., Cao D. N., Dzida M., Osman S. M., Le H. C., Tran V. D.: Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches// International Journal of Green Energy -Vol. 21,iss. 12 (2024), s.2771-2798
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1080/15435075.2024.2326076
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 51 razy

Publikacje, które mogą cię zainteresować

Meta Tagi