INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH - Publikacja - MOST Wiedzy

Wyszukiwarka

INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH

Abstrakt

The Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters related to speech changes produced by the Lombard effect are extracted. Mid-term statistics are built upon the parameters and used for the self-similarity matrix construction. They constitute input data for a convolutional neural network (CNN). The self-similarity-based approach is then compared with two other methods, i.e., spectrograms used as input to the CNN and speech acoustic parameters combined with the k-nearest neighbors algorithm. The experimental investigations show the superiority of the self-similarity approach applied to Lombard effect detection over the other two methods utilized. Moreover, small standard deviation values for the self-similarity approach prove the resulting high accuracies.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Autorzy (4)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
International Journal of Applied Mathematics and Computer Science nr 33, strony 479 - 492,
ISSN: 1641-876X
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Korvel G., Treigys P., Kąkol K., Kostek B.: INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH// International Journal of Applied Mathematics and Computer Science -,iss. 33/3 (2023), s.479-492
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.34768/amcs-2023-0035
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 88 razy

Publikacje, które mogą cię zainteresować

Meta Tagi