Abstrakt
The aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based system for automatic speech conversion, mimicking a human way to make speech more intelligible in the presence of noise, i.e., to create Lombard speech. Several spectral descriptors are analyzed in the context of Lombard speech and various types of noise. In conclusion, pub-like and babble noises are most similar when comparing Spectral Entropy, Spectral RollOff, and Spectral Brightness. The larger values of these spectral descriptors, the more the speech-in-noise signal is degraded. To quantify the effect of noise on speech, containing the Lombard effect, an average formant track error is calculated as an objective image quality metric. For image quality assessment Structural SIMilarity (SSIM) index is employed.
Cytowania
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
- Copyright (2022 The Author(s), under exclusive license to Springer Nature Switzerland AG)
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Korvel G., Kąkol K., Treigys P., Kostek B.: Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically// / : , 2022,
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-031-16564-1_38
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 90 razy
Publikacje, które mogą cię zainteresować
Applying the Lombard Effect to Speech-in-Noise Communication
- G. Korvel,
- K. Kąkol,
- P. Treigys
- + 1 autorów
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
- G. Korvel,
- P. Treigys,
- K. Kąkol
- + 1 autorów
Evaluation of Lombard Speech Models in the Context of Speech in Noise Enhancement
- G. Korvel,
- K. Kąkol,
- O. Kurasova
- + 1 autorów