Barbara Klaudel - Publications - Bridge of Knowledge

Search

Filters

total: 11

  • Category
  • Year
  • Options

clear Chosen catalog filters disabled

Catalog Publications

Year 2024
Year 2023
  • Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
    Publication

    Renal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...

    Full text available to download

  • Explainable machine learning for diffraction patterns
    Publication
    • S. Nawaz
    • V. Rahmani
    • D. Pennicard
    • S. P. R. Setty
    • B. Klaudel
    • H. Graafsma

    - Journal of Applied Crystallography - Year 2023

    Serial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...

    Full text available to download

  • Information Extraction from Polish Radiology Reports using Language Models
    Publication

    Radiology reports are vital elements of directing patient care. They are usually delivered in free text form, which makes them prone to errors, such as omission in reporting radiological findings and using difficult-to-comprehend mental shortcuts. Although structured reporting is the recommended method, its adoption continues to be limited. Radiologists find structured reports too limiting and burdensome. In this paper, we propose...

    Full text available to download

Year 2022
Year 2021
  • Deep convolutional neural network for predicting kidney tumour malignancy 
    Publication

    - Year 2021

    Purpose: According to the statistics, up to 15-20% of removed solid kidney tumors turn out to be benign in postoperative histopathological examination, despite having been identified as malignant by a radiologist. The aim of the research was to limit the number of unnecessary nephrectomies of benign tumors. Methods or Background: We propose a machine-aided diagnostic system for kidney...

    Full text to download in external service

Year 2020
  • Medical Image Dataset Annotation Service (MIDAS)
    Publication

    - Year 2020

    MIDAS (Medical Image Dataset Annotation Service) is a custom-tailored tool for creating and managing datasets either for deep learning, as well as machine learning or any form of statistical research. The aim of the project is to provide one-fit-all platform for creating medical image datasets that could easily blend in hospital's workflow. In our work, we focus on the importance of medical data anonimization, discussing the...

    Full text to download in external service

seen 2239 times