dr inż. Piotr Andrzej Mironowicz
Publications
Filters
total: 33
Catalog Publications
Year 2024
-
Bounding conditional entropy of bipartite states with Bell operators
PublicationQuantum information theory explores numerous properties that surpass classical paradigms, offering novel applications and benefits. Among these properties, negative conditional von Neumann entropy (CVNE) is particularly significant in entangled quantum systems, serving as an indicator of potential advantages in various information-theoretic tasks, despite its indirect observability. In this paper, we investigate the relationship...
-
Generalized measurements on qubits in quantum randomness certification and expansion
PublicationQuantum mechanics has greatly impacted our understanding of microscopic nature. One of the key concepts of this theory is generalized measurements, which have proven useful in various quantum information processing tasks. However, despite their significance, they have not yet been shown empirically to provide an advantage in quantum randomness certification and expansion protocols. This investigation explores scenarios where generalized...
-
Quantum strategies for rendezvous and domination tasks on graphs with mobile agents
PublicationThis paper explores the application of quantum nonlocality, a renowned and unique phenomenon acknowledged as a valuable resource. Focusing on an alternative application, we demonstrate its quantum advantage for mobile agents engaged in specific distributed tasks without communication. The research addresses the significant challenge of rendezvous on graphs and introduces a distributed task for mobile agents grounded in the graph...
-
Quantum-assisted rendezvous on graphs: explicit algorithms and quantum computer simulations
PublicationWe study quantum advantage in one-step rendezvous games on simple graphs analytically, numerically, and using noisy intermediate-scale quantum (NISQ) processors. Our protocols realise the recently discovered (Mironowicz 2023 New J. Phys. 25 013023) optimal bounds for small cycle graphs and cubic graphs. In the case of cycle graphs, we generalise the protocols to arbitrary graph size. The NISQ processor experiments realise the expected...
-
Semi-definite programming and quantum information
PublicationThis paper presents a comprehensive exploration of semi-definite programming (SDP) techniques within the context of quantum information. It examines the mathematical foundations of convex optimization, duality, and SDP formulations, providing a solid theoretical framework for addressing optimization challenges in quantum systems. By leveraging these tools, researchers and practitioners can characterize classical and quantum correlations,...
Year 2023
-
Entangled rendezvous: a possible application of Bell non-locality for mobile agents on networks
PublicationRendezvous is an old problem of assuring that two or more parties, initially separated, not knowing the position of each other, and not allowed to communicate, are striving to meet without pre-agreement on the meeting point. This problem has been extensively studied in classical computer science and has vivid importance to modern and future applications. Quantum non-locality, like Bell inequality violation, has shown that in many...
-
Experimental certification of more than one bit of quantum randomness in the two inputs and two outputs scenario
PublicationOne of the striking properties of quantum mechanics is the occurrence of the Bell-type non-locality. They are a fundamental feature of the theory that allows two parties that share an entangled quantum system to observe correlations stronger than possible in classical physics. In addition to their theoretical significance, non-local correlations have practical applications, such as device-independent randomness generation, providing...
Year 2022
-
Hybrid no-signaling-quantum correlations
PublicationFundamental investigations in non-locality have shown that while the no-signaling principle alone is not sufficient to single out the set of quantum non-local correlations, local quantum mechanics and no-signaling together exactly reproduce the set of quantum correlations in the two-party Bell scenario. Here, we introduce and study an intermediate hybrid no-signaling quantum set of non-local correlations that we term HNSQ in the...
-
Non-Perfect Propagation of Information to a Noisy Environment with Self-Evolution
PublicationWe study the non-perfect propagation of information for evolving a low-dimensional environment that includes self-evolution as well as noisy initial states and analyse the interrelations between the degree of objectivization and environment parameters. In particular, we consider an analytical model of three interacting qubits and derive its objectivity parameters. The numerical analysis shows that the quality of the spectrum broadcast...
-
Quantum security and theory of decoherence
PublicationWe sketch a relation between two crucial, yet independent, fields in quantum information research, viz. quantum decoherence and quantum cryptography. We investigate here how the standard cryptographic assumption of shielded laboratory, stating that data generated by a secure quantum device remain private unless explicitly published, is disturbed by the einselection mechanism of quantum Darwinism explaining the measurement process...
Year 2021
-
Quantum randomness protected against detection loophole attacks
PublicationDevice and semi-device-independent private quantum randomness generators are crucial for applications requiring private randomness. However, they are vulnerable to detection inefficiency attacks and this limits severely their usage for practical purposes. Here, we present a method for protecting semi-device-independent private quantum randomness generators in prepare-and-measure scenarios against detection inefficiency attacks....
Year 2020
-
Blurred quantum Darwinism across quantum reference frames
PublicationQuantum Darwinism describes objectivity of quantum systems via their correlations with their environment--information that hypothetical observers can recover by measuring the environments. However, observations are done with respect to a frame of reference. Here, we take the formalism of [Giacomini, Castro-Ruiz, & Brukner. Nat Commun 10, 494 (2019)], and consider the repercussions on objectivity when changing quantum reference...
-
Experimental certification of an informationally complete quantum measurement in a device-independent protocol
PublicationMinimal informationally complete positive operator-valued measures (MIC-POVMs) are special kinds of measurement in quantum theory in which the statistics of their d2-outcomes are enough to reconstruct any d-dimensional quantum state. For this reason, MIC-POVMs are referred to as standard measurements for quantum information.Here, we report an experiment with entangled photon pairs that certifies, for what we believe is the first...
-
Experimental test of nonclassicality with arbitrarily low detection efficiency
PublicationWe theoretically introduce and experimentally demonstrate the realization of a nonclassicality test that allows for arbitrarily low detection efficiency without invoking an extra assumption of independence of the devices. Our test and its implementation is set in a prepare-and-measure scenario with an upper limit on the classical communication capacity of the channel through which the systems are communicated. The essence for our...
Year 2019
-
Experimentally feasible semi-device-independent certification of four-outcome positive-operator-valued measurements
PublicationRecently the quantum information science community devoted a lot of attention to the theoretical and practical aspects of generalized measurements, the formalism of all possible quantum operations leading to acquisition of classical information. On the other hand, due to imperfections present in quantum devices, and limited thrust to them, a trend of formulating quantum information tasks in a semi-device-independent manner emerged....
Year 2018
-
Connections between Mutually Unbiased Bases and Quantum Random Access Codes
PublicationWe present a new quantum communication complexity protocol, the promise--Quantum Random Access Code, which allows us to introduce a new measure of unbiasedness for bases of Hilbert spaces. The proposed measure possesses a clear operational meaning and can be used to investigate whether a specific number of mutually unbiased bases exist in a given dimension by employing Semi--Definite Programming techniques.
-
Programowanie strukturalne
PublicationCelem niniejszej książki jest przedstawienie wybranych metod programowania strukturalnego, tzn. takich, które prowadzą do poprawnej struktury, poprawy jakości oprogramowania oraz zwiększenia efektywności programistów. Może ona służyć jako podręcznik akademicki wykorzystywany na podstawowych kursach inżynierii oprogramowania. Zainteresuje również wszystkich tych, którzy zajmują się programowaniem amatorskim i chcą poszerzyć swoją...
-
Steering is an essential feature of non-locality in quantum theory
PublicationA physical theory is called non-local when observers can produce instantaneous effects over distant systems. Non-local theories rely on two fundamental effects: local uncertainty relations and steering of physical states at a distance. In quantum mechanics, the former one dominates the other in a well-known class of non-local games known as XOR games. In particular, optimal quantum strategies for XOR games are completely determined...
-
System information propagation for composite structures
PublicationWe study in details decoherence process of a spin register, coupled to a spin environment. We use recently developed methods of information transfer study in open quantum systems to analyze information flow between the register and its environment. We show that there are regimes when not only the register decoheres effectively to a classical bit string, but this bit string is redundantly encoded in the environment, making it available...
-
Trade-offs in multiparty Bell-inequality violations in qubit networks
PublicationTwo overlapping bipartite binary input Bell inequalities cannot be simultaneously violated as this would contradict the usual no-signalling principle. This property is known as monogamy of Bell inequality violations and generally Bell monogamy relations refer to trade-offs between simultaneous violations of multiple inequalities. It turns out that multipartite Bell inequalities admit weaker forms of monogamies that allow for violations...
Year 2017
-
Complementarity between entanglement-assisted and quantum distributed random access code
PublicationCollaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific...
-
Monitoring of the Process of System Information Broadcasting in Time
PublicationOne of the problems of quantum physics is how a measurement turns quantum, noncopyable data, towards copyable classical knowledge. We use the quantum state discrimination in a central system model to show how its evolution leads to the broadcasting of the information, and how orthogonalization and decoherence factors allow us to monitor the distance of the state in question to the one perfectly broadcasting information, in any...
Year 2016
-
Applications of semi-definite optimization in quantum information protocols
PublicationThis work is concerned with the issue of applications of the semi-definite programming (SDP) in the field of quantum information sci- ence. Our results of the analysis of certain quantum information protocols using this optimization technique are presented, and an implementation of a relevant numerical tool is introduced. The key method used is NPA discovered by Navascues et al. [Phys. Rev. Lett. 98, 010401 (2007)]. In chapter...
-
Increased Certification of Semi-device Independent Random Numbers using Many Inputs and More Postprocessing
PublicationQuantum communication with systems of dimension larger than two provides advantages in information processing tasks. Examples include higher rates of key distribution and random number generation. The main disadvantage of using such multi-dimensional quantum systems is the increased complexity of the experimental setup. Here, we analyze a not-so-obvious problem: the relation between randomness certification and computational requirements...
Year 2015
-
A Task-Scheduling Approach for Efficient Sparse Symmetric Matrix-Vector Multiplication on a GPU
PublicationIn this paper, a task-scheduling approach to efficiently calculating sparse symmetric matrix-vector products and designed to run on Graphics Processing Units (GPUs) is presented. The main premise is that, for many sparse symmetric matrices occurring in common applications, it is possible to obtain significant reductions in memory usage and improvements in performance when the matrix is prepared in certain ways prior to computation....
-
Device-independent quantum key distribution based on measurement inputs
PublicationWe provide an analysis of a family of device-independent quantum key distribution (QKD) protocols that has the following features. (a) The bits used for the secret key do not come from the results of the measurements on an entangled state but from the choices of settings. (b) Instead of a single security parameter (a violation of some Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key....
-
Robust amplification of Santha-Vazirani sources with three devices
PublicationWe demonstrate that amplification of arbitrarily weak randomness is possible using quantum resources. We present a randomness amplification protocol that involves Bell experiments. We find a Bell inequality which can amplify arbitrarily weak randomness and give a detailed analysis of the protocol involving it. Our analysis includes finding a sufficient violation of Bell inequality as a function of the initial quality of randomness....
Year 2014
-
Properties of dimension witnesses and their semidefinite programming relaxations
PublicationIn this paper we develop a method for investigating semi-device-independent randomness expansion protocols that was introduced in Li et al. [H.-W. Li, P. Mironowicz, M. Pawłowski, Z.-Q. Yin, Y.-C. Wu, S. Wang, W. Chen, H.-G. Hu, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 87, 020302(R) (2013)]. This method allows us to lower bound, with semi-definite programming, the randomness obtained from random number generators based on dimension...
Year 2013
-
Certain family of analytical solutions of nonlinear von Neumann equations
PublicationIn this paper we present a slight generalization of certain type of Darboux transformation, that may be used sub-sequently in a convenient way. This method allows to obtain families of solutions of nonlinear von Neumann equations, that are used in particular in DNA modeling.
-
Relationship between semi- and fully-device-independent protocols
PublicationWe study the relation between semi and fully device independent protocols. As a tool, we use the correspondence between Bell inequalities and dimension witnesses. We present a method for converting the former into the latter and vice versa. This relation provides us with interesting results for both scenarios. First, we find new random number generation protocols with higher bit rates for both the semi and fully device independent...
-
Robustness of quantum-randomness expansion protocols in the presence of noise
PublicationIn this paper we investigate properties of several randomness generation protocols in the device independent framework. Using Bell-type inequalities it is possible to certify that the numbers generated by an untrusted device are indeed random. We present a selection of certificates which guarantee two bits of randomness for each run of the experiment in the noiseless case and require the parties to share a maximally entangled state....
Year 2010
-
Co to jest czas?
PublicationŚwięty Augustyn wypowiedział kiedyś takie słowa: "Czymże jest czas? Jeśli nikt mnie o to nie pyta, wiem. Jeśli pytającemu usiłuję wytłumaczyć, nie wiem." Nie ma wątpliwości, że czas jest czymś ważnym,a nawet bardzo ważnym - bez niego nic by się nie działo. Czy czas nie jest tym dobrem, którego nam brakuje najczęściej? Wielu filozofów widzi w czasie jedną z podstaw wszelkich sądów matematycznych.Strategiczną rolę czasu jeszcze bardziej...
Year 2009
-
Czym jest prawdopodobieństwo?
PublicationWszyscy posługujemy się pojęciem prawdopodobieństwa. Mówienie o miarach probabilistycznych na sigma-ciałach i o przestrzeniach probabilistycznych nie odpowiada jednak na pytanie, czym prawdopodobieństwo właściwie jest. Nie mówiąc nic miłego o aksjomatach, opowiem jak na pytanie "czym jest prawdopodobieństwo?" odpowiadali matematycy-filozofowie.
seen 2787 times