Bioconversion of waste materials to hydrogen via dark fermentation using Enterobacter aerogenes - Publication - Bridge of Knowledge

Search

Bioconversion of waste materials to hydrogen via dark fermentation using Enterobacter aerogenes

Abstract

Hydrogen can be obtained via dark fermentation with the use of anaerobic Enterobacter aerogenes. The efficiency of hydrogen production by fermentation techniques is strongly dependent on the con-ditions used i.e. the pH range, temperature, composition of fermentation broths, oxygen content, or even the presence of substances with potentially inhibitory effects on the microbiological culture [1-4]. The paper describes the study of dark fermentation in four parallel thermostatic glass bioreactors with a working capacity of 50 mL each. The research concerned differences in hydrogen productivity de-pending on the type of carbon source used. Obtained exemplary results allowed to evaluate the effec-tiveness of the process [6] in relation to the production of hydrogen from various types of raw materi-als, i.e. pure glucose, waste glycerol and alkaline meadow grass hydrolysates, obtained according to the procedure given in [5]

Cite as

Full text

download paper
downloaded 110 times
Publication version
Accepted or Published Version
License
Copyright (© 2019 COBRABiD)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Aparatura Badawcza i Dydaktyczna no. 24, pages 4 - 13,
ISSN: 1426-9600
Language:
English
Publication year:
2019
Bibliographic description:
Kucharska K., Słupek E., Kamiński M. A.: Bioconversion of waste materials to hydrogen via dark fermentation using Enterobacter aerogenes// Aparatura Badawcza i Dydaktyczna. -Vol. 24., iss. 1 (2019), s.4-13
Bibliography: test
  1. Kucharska K., Hołowacz I., Konopacka-Łyskawa D., Rybarczyk P., Kamiński M., Key issues in mod- eling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renew Energy 2018;129:384-408. doi:10.1016/j.renene.2018.06.018. open in new tab
  2. Łukajtis R., Kucharska K., Hołowacz I., Rybarczyk P., Wychodnik K., Słupek E., et al. Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation. Energies 2018. doi:10.3390/en11030639. open in new tab
  3. Chen W.-H., Chen S.-Y., Kumar Khanal S., Sung S., Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrogen Energy 2006;31:2170-8. doi:10.1016/j.ijhydene.2006. 02.020. open in new tab
  4. Azwar M. Y., Hussain M. A., Abdul-Wahab A. K., Development of biohydrogen production by pho- tobiological, fermentation and electrochemical processes: A review. Renew Sustain Energy Rev 2014;31. doi:10.1016/j.rser.2013.11.022. open in new tab
  5. Kucharska K., Łukajtis R., Słupek E., Cieśliński H., Rybarczyk P., Kamiński M., Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis. Molecules 2018; 23:1-21. doi:10.3390/molecules23113029. open in new tab
  6. Mussatto S. I., Dragone G. M., Biomass Pretreatment, Biorefineries, and Potential Products for a Bioeconomy Development. In: S. I. Mussatto, editor. Biomass Fractionation Technol. Lignocel- lul. Feed. Based Biorefinery, Amsterdam: Elsevier Inc.; 2016, p. 1-22. open in new tab
  7. Couto S. R., Sanromán M. Á., Application of solid-state fermentation to food industry -A review. J Food Eng 2006. doi:10.1016/j.jfoodeng.2005.05.022. open in new tab
  8. Singh R., White D., Demirel Y., Kelly R., Noll K., Blum P., Uncoupling fermentative synthesis of mo- lecular hydrogen from biomass formation in Thermotoga maritima. Appl Environ Microbiol 2018; 84:1-16. doi:10.1128/AEM.00998-18. open in new tab
  9. Chou C. H., Wang C. W., Huang C. C., Lay J. J., Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen. Int J Hydrogen Energy 2008;33: 1550-8. doi:10.1016/j.ijhydene.2007.09.031. open in new tab
  10. Zhang D., Zhu W., Tang C., Suo Y., Gao L., Yuan X., et al. Bioreactor performance and methanogen- ic population dynamics in a low-temperature (5-18°C) anaerobic fixed-bed reactor. Bioresour Technol 2012;104:136-43. doi:10.1016/j.biortech.2011.10.086. open in new tab
  11. Kossatz H. L., Rose S. H., Viljoen-Bloom M., van Zyl W. H., Production of ethanol from steam ex- ploded triticale straw in a simultaneous saccharification and fermentation process. Process Bio- chem 2017;53:10-6. doi:10.1016/j.procbio.2016.11.023. open in new tab
  12. Mohd Yasin N. H., Rahman N. A., Man H. C., Mohd Yusoff M. Z., Hassan M. A., Microbial character- ization of hydrogen-producing bacteria in fermented food waste at different pH values. Int J Hy- drogen Energy 2011;36:9571-80. doi:10.1016/j.ijhydene.2011.05.048. open in new tab
  13. Chen G., Yao J., Liu J., Yan B., Shan R., Biomass to hydrogen-rich syngas via catalytic steam reform- ing of bio-oil. Renew Energy 2016. doi:10.1016/j.renene.2016.01.073. open in new tab
  14. Dabrock B., Bahl H., Gottschalk G., Parameters Affecting Solvent Production by Clostridium pas- teurianum. Appl Environ Microbiol 1992;58:1233-9. doi:0099-2240/92/041233-07$02.00/0. open in new tab
  15. Lu L., Ren N. Q., Zhao X., Wang H. A., Wu D., Xing D. F., Hydrogen production, methanogen inhi- bition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ Sci 2011;4:1329-36. doi:10.1039/c0ee00588f. open in new tab
  16. Temudo M. F., Kleerebezem R., van Loosdrecht M., Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 2007;98:69-79. doi:10.1002/ bit.21412. open in new tab
  17. Mu Y., Yu H. Q., Wang G., Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme Microb Technol 2007;40:947-53. doi:10.1016/j.enzmictec.2006.07.033. open in new tab
  18. Pachapur V. L., Sarma S. J., Brar S. K., Le Bihan Y., Buelna G., Verma M., Biohydrogen produc- tion by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of En- terobacter aerogenes and clostridium butyricum. Bioresour Technol 2015;193:297-306. doi:10. 1016/j.biortech.2015.06.095. open in new tab
  19. Mu J., Li S., Chen D., Xu H., Han F., Feng B., et al. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothe- coides. Bioresour Technol 2015;185:99-105. doi:10.1016/j.biortech.2015.02.082. open in new tab
  20. Fernandes B. S., Peixoto G., Albrecht F. R., Saavedra del Aguila N. K., Zaiat M., Potential to pro- duce biohydrogen from various wastewaters. Energy Sustain Dev 2010;14:143-8. doi:10.1016/j. esd.2010.03.004. open in new tab
  21. Lin C. Y., Lay C. H., Sen B., Chu C. Y., Kumar G., Chen C. C., et al. Fermentative hydrogen production from wastewaters: A review and prognosis. Int J Hydrogen Energy 2012;37:15632-42. doi:10. 1016/j.ijhydene.2012.02.072. open in new tab
  22. Guo P., Mochidzuki K., Cheng W., Zhou M., Gao H., Zheng D., et al. Effects of different pretreat- ment strategies on corn stalk acidogenic fermentation using a microbial consortium. Bioresour Technol 2011;102:7526-31. doi:10.1016/j.biortech.2011.04.083. open in new tab
  23. Kucharska K., Rybarczyk P., Hołowacz I., Łukajtis R., Glinka M., Kamiński M., Pretreatment of Ligno- cellulosic Materials as Substrates for Fermentation Processes. Molecules 2018;23:2937. doi:10. 3390/molecules23112937. open in new tab
  24. Kucharska K., Łukajtis R., Słupek E., Cieśliński H., Rybarczyk P., Kamiński M., Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis. Molecules 2018; 23:1-21. doi:10.3390/molecules23113029. open in new tab
  25. Jones P. R., Akhtar M. K., Insurmountable Hurdles for Fermentative H2 Production? Biohydrogen. 67-74 (2013). DOI: 10.1016/B978-0-444-59555-3.00004-0. open in new tab
  26. Binod P., Pusztahelyi T., Nagy V., Sandhya C., Szakács G., Pócsi I., et al. Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid-state fermentation. Enzyme Microb Technol 2005. doi:10.1016/j.enzmictec.2004.12.031. open in new tab
  27. Łukajtis R., Rybarczyk P., Kucharska K., Konopacka-Łyskawa D., Słupek E., Wychodnik K., et al. Op- timization of saccharification conditions of lignocellulosic biomass under alkaline pre-treatment and enzymatic hydrolysis. Energies 2018;11. doi:10.3390/en11040886. open in new tab
  28. Song C., Liu Q., Ji N., Deng S., Zhao J., Kitamura Y., Natural gas purification by heat pump assisted MEA absorption process. Appl Energy 2017;204:353-61. doi:10.1016/j.apenergy.2017.07.052. open in new tab
  29. Yokoi H., Ohkawara T., Hirose J., Hayashi S., Takasaki Y., Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 1995;80:571-4. doi:10.1016/ 0922-338X(96)87733-6. open in new tab
  30. Khaleb N., Jahim J., Kamal S., Biohydrogen production using hydrolysates of palm oil mill effluent (POME). Journal of Asian Scientific Research 2012, 2(11): 705-710.
  31. Trchounian K., Sawers R. G., Trchounian A., Improving biohydrogen productivity by microbial dark- and photo-fermentations: Novel data and future approaches. Renew Sustain Energy Rev 2017; 80:1201-16. doi:10.1016/j.rser.2017.05.149. open in new tab
  32. Balachandar G., Khanna N., Das D., Biohydrogen Production from Organic Wastes by Dark Fermen- tation. 1st ed. Elsevier B.V.; 2013. doi:10.1016/B978-0-444-59555-3.00006-4. open in new tab
  33. Boni M. R., Sbaffoni S., Tuccinardi L., Viotti P., Development and calibration of a model for bio- hydrogen production from organic waste. Waste Manag 2013;33:1128-35. doi:10.1016/j.wasman. 2013.01.019. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 239 times

Recommended for you

Meta Tags