Closed-loop stimulation of temporal cortex rescues functional networks and improves memory - Publication - Bridge of Knowledge

Search

Closed-loop stimulation of temporal cortex rescues functional networks and improves memory

Abstract

Memory failures are frustrating and often the result of ineffective encoding. One approach to improving memory outcomes is through direct modulation of brain activity with electrical stimulation. Previous efforts, however, have reported inconsistent effects when using open-loop stimulation and often target the hippocampus and medial temporal lobes. Here we use a closed-loop system to monitor and decode neural activity from direct brain recordings in humans. We apply targeted stimulation to lateral temporal cortex and report that this stimulation rescues periods of poor memory encoding. This system also improves later recall, revealing that the lateral temporal cortex is a reliable target for memory enhancement. Taken together, our results suggest that such systems may provide a therapeutic approach for treating memory dysfunction.

Citations

  • 2 3 1

    CrossRef

  • 0

    Web of Science

  • 1 8 5

    Scopus

Authors (22)

  • Photo of  Youssef Ezzyat

    Youssef Ezzyat

    • University of Pennsylvania Department of Psychology
  • Photo of  Paul A. Wanda

    Paul A. Wanda

    • University of Pennsylvania Department of Psychology
  • Photo of  Deborah F. Levy

    Deborah F. Levy

    • University of Pennsylvania Department of Psychology
  • Photo of  Allison Kadel

    Allison Kadel

    • University of Pennsylvania Department of Psychology
  • Photo of  Ada Aka

    Ada Aka

    • University of Pennsylvania Department of Psychology
  • Photo of  Isaac Pedisich

    Isaac Pedisich

    • University of Pennsylvania Department of Psychology
  • Photo of  Michael R. Sperling

    Michael R. Sperling

    • Thomas Jefferson University Hospital Deparment of Neurology
  • Photo of  Ashwini Sharan

    Ashwini Sharan

    • Thomas Jefferson University Hospital Department of Neurosurgery
  • Photo of  Bradley C. Lega

    Bradley C. Lega

    • University of Texas Department of Neurosurgery
  • Photo of  Alexis Burks

    Alexis Burks

    • University of Texas Department of Neurosurgery
  • Photo of  Robert E. Gross

    Robert E. Gross

    • Emory University Hospital, Department of Neurosurgery
  • Photo of  Cory S. Inman

    Cory S. Inman

    • Emory University Hospital Department of Neurosurgery
  • Photo of  Barbara C. Jobst

    Barbara C. Jobst

    • Dartmouth-Hitchcock Medical Center Department of Neurology
  • Photo of  Mark A. Gorenstein

    Mark A. Gorenstein

    • Dartmouth-Hitchcock Medical Center Department of Neurology
  • Photo of  Kathryn A. Davis

    Kathryn A. Davis

    • Hospital of the University of Pennsylvania Department of Neurology
  • Photo of  Gregory A. Worrell

    Gregory A. Worrell

    • Mayo Clinic Department of Neurology
  • Photo of  Joel M. Stein

    Joel M. Stein

    • Hospital of the University of Pennsylvania Department of Radiology
  • Photo of  Richard Gorniak

    Richard Gorniak

    • Thomas Jefferson University Hospital Department of Radiology
  • Photo of  Sandhitsu R. Das

    Sandhitsu R. Das

    • Hospital of the University of Pennsylvania Department of Neurology
  • Photo of  Daniel S. Rizzuto

    Daniel S. Rizzuto

    • University of Pennsylvania Department of Psychology
  • Photo of  Michael J. Kahana

    Michael J. Kahana

    • University of Pennsylvania Department of Psychology

Cite as

Full text

download paper
downloaded 44 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Nature Communications no. 9, pages 1 - 8,
ISSN: 2041-1723
Language:
English
Publication year:
2018
Bibliographic description:
Ezzyat Y., Wanda P. A., Levy D. F., Kadel A., Aka A., Pedisich I., Sperling M. R., Sharan A., Lega B. C., Burks A., Gross R. E., Inman C. S., Jobst B. C., Gorenstein M. A., Davis K. A., Worrell G. A., Kucewicz M. T., Stein J. M., Gorniak R., Das S. R., Rizzuto D. S., Kahana M. J.: Closed-loop stimulation of temporal cortex rescues functional networks and improves memory// Nature Communications. -Vol. 9, (2018), s.1-8
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41467-017-02753-0
Bibliography: test
  1. Burke, J. F. et al. Human intracranial high-frequency activity maps episodic memory formation in space and time. Neuroimage 85, 834-843 (2014). open in new tab
  2. Kim, H. Neural activity that predicts subsequent memory and forgetting: a meta-analysis of 74 fMRI studies. Neuroimage 54, 2446-2461 (2011). open in new tab
  3. Bronstein, J. M. et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68, 165-171 (2011). open in new tab
  4. Benabid, A. L. et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337, 403-406 (1991). open in new tab
  5. Fisher, R. et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51, 899-908 (2010).
  6. McIntyre, C. C. & Hahn, P. J. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol. Dis. 38, 329-337 (2010). open in new tab
  7. Greenberg, B. D. et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology 31, 2384-2393 (2006). open in new tab
  8. Holtzheimer, P. E. et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry 4, 839-849 (2017).
  9. Morrell, M. J. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295-1304 (2011). open in new tab
  10. Rosin, B. et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370-384 (2011). open in new tab
  11. Fell, J. et al. Memory modulation by weak synchronous deep brain stimulation: a pilot study. Brain Stimul. 6, 270-273 (2013). open in new tab
  12. Suthana, N. et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N. Engl. J. Med. 366, 502-510 (2012). open in new tab
  13. Miller, J. P. et al. Visual-spatial memory may be enhanced with theta burst deep brain stimulation of the fornix: a preliminary investigation with four cases. Brain 138, 1833-1842 (2015). open in new tab
  14. Titiz, A. S. et al. Theta-burst microstimulation in the human entorhinal area improves memory specificity. eLife 6, e29515 (2017). open in new tab
  15. Colsehill, S. G. et al. Material-specific recognition memory deficits elicited by unilateral hippocampal electrical stimulation. J. Neurosci. 24, 1612-1616 (2004). open in new tab
  16. Halgren, E., Wilson, C. L. & Stapleton, J. M. Human medial temporal lobe stimulation disrupts both formation and retrieval of recent memories. Brain. Cogn. 4, 287-295 (1985). open in new tab
  17. Halgren, E. & Wilson, C. L. Recall deficits produced by afterdischarges in the human hippocampal formation and amygdala. Electroencephalogr. Clin. Neurophysiol. 61, 375-380 (1985). open in new tab
  18. Lacruz, M. E., Valentin, A. V., Garcia Seoane, Morris, R. G., Selway, R. P. & Alarcon, G. A. Single pulse electrical stimulation of the hippocampus is sufficient to impair human episodic memory. Neuroscience 170, 623-632 (2010). open in new tab
  19. Merkow, M. B. et al. Stimulation of the human medial temporal lobe between learning and recall selectively enhances forgetting. Brain Stimul. 10, 645-650 (2017). open in new tab
  20. Jacobs, J. et al. Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron 92, 983-990 (2016). open in new tab
  21. Ojemann, G. A., Creutzfeldt, O., Lettich, E. & Haglund, M. M. Neuronal activity in human lateral temporal cortex related to short-term verbal memory, naming and reading. Brain 111, 1383-1403 (1988). open in new tab
  22. Kragel, J. E. et al. Similar patterns of neural activity predict memory function during encoding and retrieval. Neuroimage 155, 60-71 (2017). open in new tab
  23. Penfield, W. & Perot, P. The brain's record of auditory and visual experience. Brain 86, 595-696 (1963). open in new tab
  24. Moriarity, J. L., Boatman, D., Krauss, G. L., Storm, P. B. & Lenz, F. A. Human "memories" can be evoked by stimulation of the lateral temporal cortex after ipsilateral medial temporal lobe resection. J. Neurol. Neurosurg. Psychiatry 71, 549-551 (2001). open in new tab
  25. Bickford, R. G. et al. Changes in memory function produced by electrical stimulation of the temporal lobe in man. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36, 227-243 (1958).
  26. Curot, J. et al. Memory scrutinized through electrical brain stimulation: a review of 80 years of experiential phenomena. Neurosci. Biobehav. Rev. 78, 161-177 (2017). open in new tab
  27. Perrine, K., Devinsky, O., Uysal, S., Luciano, D. J. & Dogali, L. Left temporal neocortex mediation of verbal memory: evidence from functional mapping with cortical stimulation. Neurology 44, 1845-1850 (1994). open in new tab
  28. Boggio, P. S. et al. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories. PLoS ONE 4, e4959 (2009). open in new tab
  29. Boggio, P. S. et al. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J. Neurol. Neurosurg. Psychiatry 80, 444-447 (2009). open in new tab
  30. Floel, A., Rosser, N., Michka, O., Knecht, S. & Breitenstein, C. Non-invasive brain stimulation improves language learning. J. Cogn. Neurosci. 20, 1415-1422 (2008). open in new tab
  31. Haglund, M. M., Ojemann, G. A. & Blasdel, G. G. Optical imaging of bipolar cortical stimulation. J. Neurosurg. 78, 785-793 (1993). open in new tab
  32. Suh, M., Bahar, S., Mehta, A. D. & Schwartz, T. H. Blood volume and hemoglobin oxygenation response following electrical stimulation of human cortex. Neuroimage 31, 66-75 (2006). open in new tab
  33. Borchers, S., Himmelback, M., Logothetis, N. K. & Karanath, H. Direct electrical stimulation of the human cortex -the gold standard for mapping brain functions? Nat. Rev. Neurosci. 13, 63-70 (2012). open in new tab
  34. Hyman, J. M., Wyble, B. P., Goyal, V., Rossi, C. A. & Hasselmo, M. E. Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J. Neurosci. 23, 11725-11731 (2003). open in new tab
  35. Pavlides, C., Greenstein, Y. J., Grudman, M. & Winson, J. Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res. 439, 383-387 (1988). open in new tab
  36. Pollen, D. A. Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav. Evol. 14, 67-86 (1977). open in new tab
  37. Ezzyat, Y. et al. Direct brain stimulation modulates encoding states and memory performance in humans. Curr. Biol. 27, 1251-1258 (2017). open in new tab
  38. Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87, 96-110 (2014). open in new tab
  39. Barros, A. J. D. & Hirakata, V. N. Alternatives for logistic regression in cross- sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 3, 21 (2003). open in new tab
  40. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613-13620 (2009). open in new tab
  41. Long, N. M., Burke, J. F. & Kahana, M. J. Subsequent memory effect in intracranial and scalp EEG. Neuroimage 84, 488-494 (2014). open in new tab
  42. Burke, J. F., Ramayya, A. G. & Kahana, M. J. Human intracranial high- frequency activity during memory processing: Neural oscillations or stochastic volatility? Curr. Opin. Neurobiol. 31, 104-110 (2015). open in new tab
  43. Miller, K. J. et al. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. Neuroimage 85, 711-720 (2014). open in new tab
  44. Nilakantan, A. S., Bridge, D. J., Gagnon, E. P., VanHaerents, S. A. & Voss, J. L. Stimulation of the posterior cortical-hippocampal network enhances precision of memory recollection. Curr. Biol. 27, 465-470 (2017). open in new tab
  45. Fox, M. D. et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl Acad. Sci. USA 111, E4367-E4375 (2014). open in new tab
  46. Solomon, E. A. et al. Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition. Nat. Commun. 8, 1704 (2017). open in new tab
  47. Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015). open in new tab
  48. Palop, J. J. & Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Neurosci. 17, 777-792 (2016). open in new tab
  49. Gao, R., Peterson, E. J. & Voytek, B. Inferring synaptic excitation/inhibition balance from field potentials. Neuroimage 158, 70-78 (2017). open in new tab
  50. Shannon, R. V. A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39, 424-426 (1992). open in new tab
  51. Fischl, B. et al. Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11-22 (2004). open in new tab
  52. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26-41 (2008). open in new tab
  53. Yushkevich, P. A. et al. Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum. Brain. Mapp. 36, 258-287 (2015). open in new tab
  54. Dykstra, A. R. et al. Individualized localization and cortical surface-based registration of intracranial electrodes. Neuroimage 59, 3563-3570 (2012). open in new tab
  55. Hastie, T., Tibshirani, R., & Friedman, J. The Elements of Statistical Learning. (Springer-Verlag, New York, 2001). open in new tab
  56. Fan, R. E., Chan, K. W., Hseih, C. J., Wang, X. R. & Lin, C. J. Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871-1874 (2008).
  57. Department of Psychology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA. 2 Deparment of Neurology, Thomas Jefferson University Hospital, 900 Walnut Street, Philadelphia, PA 19107, USA. 3 Department of Neurosurgery, Thomas Jefferson University Hospital, 900 Walnut Street, Philadelphia, PA 19107, USA. 4 Department of Neurosurgery, University of Texas, Southwestern, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA. 5 Department of Neurosurgery, Emory University Hospital, 1365 Clifton Road NE, Atlanta, GA 30322, USA. open in new tab
  58. Department of Neurology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA. 7 Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA. 8 Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA. 9 Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA. 10 Department of Radiology, Thomas Jefferson University Hospital, 900 Walnut Street, Philadelphia, PA 19107, USA open in new tab
Verified by:
Gdańsk University of Technology

seen 181 times

Recommended for you

Meta Tags