Abstract
Automation or even computer assistance of the popular infertility treatment method: ICSI (Intracytoplasmic Sperm Injection) would speed up the whole process and improve the control of the results. This paper introduces a preliminary research for automatic spermatozoon injection into the oocyte cytoplasm. Here, the method for detection a correct orientation of the polar body of the oocyte is presented. Proposed method uses deep learning U-Net architecture for object segmentation. This solution proved to be universal and had no demand for numerous dataset or high-quality Images.
Citations
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Authors (9)
Cite as
Full text
download paper
downloaded 86 times
- Publication version
- Accepted or Published Version
- License
- Copyright (2019, IEEE)
Keywords
Details
- Category:
- Conference activity
- Type:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Title of issue:
- 2019 12th International Conference on Human System Interaction (HSI) strony 121 - 126
- Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Mazur-Milecka M., Kaczmarczyk E., Wróbel Ł., Przybylski P., Trudnowska M., Podwójcik A., Jagiello M., Łukaszuk K., Rumiński J.: Detection of the Oocyte Orientation for the ICSI Method Automation// 2019 12th International Conference on Human System Interaction (HSI)/ : , 2019, s.121-126
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/hsi47298.2019.8942602
- Verified by:
- Gdańsk University of Technology
seen 144 times
Recommended for you
Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends
- I. Qureshi,
- J. Yan,
- Q. Abbas
- + 5 authors
2022