Flow Boiling in Minigap in the Reversed Two-Phase Thermosiphon Loop - Publication - Bridge of Knowledge

Search

Flow Boiling in Minigap in the Reversed Two-Phase Thermosiphon Loop

Abstract

The paper presents the results of experimental investigations of a model of a heat exchanger featuring a minigap, which is perceived as an evaporator for an inverted thermosiphon. The system works with a single component test fluid. The tested evaporator generates pumping power in the test loop in a way similar to the mammoth pump. The tests regarded a module of the heat exchanger, consisting of a hot leg and a cold leg with the width by the length of 0.1 × 0.2 m, heated by a uniform heat flux. In the tests, the minigaps of 1, 2 and 3 mm were formed. Two fluids, namely, distilled water and ethanol, were tested in the facility. Two-phase flow structures for both working fluids and various operational parameters, together with comprehensive visualization material, are presented. The specifics of pressure changes and its influence on operating parameters and flow structure are discussed.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 26 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ENERGIES no. 12, pages 1 - 22,
ISSN: 1996-1073
Language:
English
Publication year:
2019
Bibliographic description:
Klugmann M., Dąbrowski P., Mikielewicz D.: Flow Boiling in Minigap in the Reversed Two-Phase Thermosiphon Loop// ENERGIES -Vol. 12,iss. 17 2019, s.1-22
DOI:
Digital Object Identifier (open in new tab) 10.3390/en12173368
Bibliography: test
  1. Alam, T.; Lee, P.S.; Yap, C.R.; Jin, L. A comparative study of flow boiling heat transfer and pressure drop characteristics in microgap and microchannel heat sink and an evaluation of microgap heat sink for hotspot mitigation. Int. J. Heat Mass Transf. 2013, 58, 335-347. [CrossRef] open in new tab
  2. Bar-Cohen, A.; Holloway, C.; Kaffel, A.; Riaz, A. Waves and instabilities in high quality adiabatic flow in microgap channels. Int. J. Multiph. Flow 2016, 83, 62-76. [CrossRef] open in new tab
  3. Tamanna, A.; Lee, P.S. Flow boiling instability characteristics in expanding silicon microgap heat sink. Int. J. Heat Mass Transf. 2015, 89, 390-405. [CrossRef] open in new tab
  4. Alam, T.; Lee, P.S.; Yap, C.R.; Jin, L. Experimental investigation of local flow boiling heat transfer and pressure drop characteristics in microgap channel. Int. J. Multiph. Flow 2012, 42, 164-174. [CrossRef] open in new tab
  5. Ajith Krishnan, R.; Balasubramanian, K.R.; Suresh, S. Experimental investigation of the effect of heat sink orientation on subcooled flow boiling performance in a rectangular microgap channel. Int. J. Heat Mass Transf. 2018, 120, 1341-1357. [CrossRef] open in new tab
  6. Strąk, K.; Piasecka, M.; Maciejewska, B. Spatial orientation as a factor in flow boiling heat transfer of cooling liquids in enhanced surface minichannels. Int. J. Heat Mass Transf. 2018, 117, 375-387. [CrossRef] open in new tab
  7. Piasecka, M.; Maciejewska, B. Heat transfer coefficient during flow boiling in a minichannel at variable spatial orientation. Exp. Therm. Fluid Sci. 2015, 68, 459-467. [CrossRef] open in new tab
  8. Khodabandeh, R.; Furberg, R. Heat transfer, flow regime and instability of a nano-and micro-porous structure evaporator in a two-phase thermosyphon loop. Int. J. Therm. Sci. 2010, 49, 1183-1192. [CrossRef] open in new tab
  9. Asrar, P.; Zhang, X.; Green, C.E.; Bakir, M.; Joshi, Y.K. Flow boiling of R245fa in a microgap with staggered circular cylindrical pin fins. Int. J. Heat Mass Transf. 2018, 121, 329-342. [CrossRef] open in new tab
  10. Zhang, J.F.; Joshi, Y.K.; Tao, W.Q. Single phase laminar flow and heat transfer characteristics of microgaps with longitudinal vortex generator array. Int. J. Heat Mass Transf. 2017, 111, 484-494. [CrossRef] open in new tab
  11. Dai, X.; Yang, F.; Fang, R.; Yemame, T.; Khan, J.A.; Li, C. Enhanced single-and two-phase transport phenomena using flow separation in a microgap with copper woven mesh coatings. Appl. Therm. Eng. 2013, 54, 281-288. [CrossRef] open in new tab
  12. Piasecka, M. Impact of selected parameters on refrigerant flow boiling heat transfer and pressure drop in minichannels. Int. J. Refrig. 2015, 56, 198-212. [CrossRef] open in new tab
  13. Nasr, M.H.; Green, C.E.; Kottke, P.A.; Zhang, X.; Sarvey, T.E.; Joshi, Y.K.; Bakir, M.S.; Fedorov, A.G. Flow regimes and convective heat transfer of refrigerant flow boiling in ultra-small clearance microgaps. Int. J. Heat Mass Transf. 2017, 108, 1702-1713. [CrossRef] open in new tab
  14. Cieslinski, J.T. Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance. Arch. Thermodyn. 2016, 37, 23-40. [CrossRef] open in new tab
  15. Saad, I.; Maalej, S.; Zaghdoudi, M.C. Combined effects of heat input power and filling fluid charge on the thermal performance of an electrohydrodynamic axially grooved flat miniature heat pipe. Appl. Therm. Eng. 2018, 134, 469-483. [CrossRef] open in new tab
  16. Narcy, M.; Lips, S.; Sartre, V. Experimental investigation of a confined flat two-phase thermosyphon for electronics cooling. Exp. Therm. Fluid Sci. 2018, 96, 516-529. [CrossRef] open in new tab
  17. Panse, S.S.; Kandlikar, S.G. A thermosiphon loop for high heat flux removal using flow boiling of ethanol in OMM with taper. Int. J. Heat Mass Transf. 2017, 106, 546-557. [CrossRef] open in new tab
  18. Klugmann, M.; Dąbrowski, P.; Mikielewicz, D. Selected thermal and flow issues in a reversed thermosiphon with a steam liquid lifter. E3S Web Conf. 2018, 70, 02009. [CrossRef] open in new tab
  19. Dobriansky, Y. Concepts of self-acting circulation loops for downward heat transfer (reverse thermosiphons). Energy Convers. Manag. 2011, 52, 414-425. [CrossRef] open in new tab
  20. Roberts, C.C. A review of heat pipe liquid delivery concepts. J. Heat Recover. Syst. 1981, 1, 261-266. [CrossRef] open in new tab
  21. Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; open in new tab
  22. Basu, D.N.; Bhattacharyya, S.; Das, P.K. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics. Nucl. Eng. Des. 2015, 280, 326-348. open in new tab
  23. Zhao, D.; Martini, C.E.; Jiang, S.; Ma, Y.; Zhai, Y.; Tan, G.; Yin, X.; Yang, R. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling. Appl. Energy 2017, 205, 1260-1269. [CrossRef] open in new tab
  24. Tong, L.; Chen, J.; Cao, X.; Yang, S.; Liao, S.; Deng, J.; Zeng, W. Visualization experiments on the geyser boiling-induced instability in vertical circular tube at low-pressures. Ann. Nucl. Energy 2015, 77, 487-497. [CrossRef] open in new tab
  25. Smyth, M.; Quinlan, P.; Mondol, J.D.; Zacharopoulos, A.; McLarnon, D.; Pugsley, A. The experimental evaluation and improvements of a novel thermal diode pre-heat solar water heater under simulated solar conditions. Renew. Energy 2018, 121, 116-122. [CrossRef] open in new tab
  26. Li, T.; Jiang, Y.; Li, Z.; Liu, Q.; Tang, D.W. Loop thermosiphon as a feasible cooling method for the stators of gas turbine. Appl. Therm. Eng. 2016, 109, 449-453. [CrossRef] open in new tab
  27. Dhumane, R.; Mallow, A.; Qiao, Y.; Gluesenkamp, K.R.; Graham, S.; Ling, J.; Radermacher, R. Enhancing the Thermosiphon-Driven Discharge of a Latent Heat Thermal Storage System used in a Personal Cooling Device. Int. J. Refrig. 2018, 88, 599-613. [CrossRef] open in new tab
  28. He, T.; Mei, C.; Longtin, J.P. Système de refroidissement assisté par thermosiphon pour les applications frigorifiques. Int. J. Refrig. 2017, 74, 163-174.
  29. Goedecke, R.; Scholl, S. Enlarged operation ranges for thermosiphon reboilers using pillow plates. Chem. Eng. Res. Des. 2015, 99, 58-66. [CrossRef] open in new tab
  30. Dobriansky, Y.; Yohanis, Y.G. Cyclical reverse thermosiphon. Arch. Thermodyn. 2010, 31, 3-32. [CrossRef] open in new tab
  31. Bar-Cohen, A.; Sheehan, J.R.; Rahim, E. Two-Phase Thermal Transport in Microgap Channels-Theory, Experimental Results, and Predictive Relations. Microgravity Sci. Technol. 2012, 24, 1-15. [CrossRef] open in new tab
  32. Mikielewicz, D.; Klugmann, M.; Wajs, J. Experimental Investigation of M-Shape Heat Transfer Coefficient Distribution of R123 Flow Boiling in Small-Diameter Tubes. Heat Transf. Eng. 2012, 33, 584-595. [CrossRef] open in new tab
  33. Dąbrowski, P.; Klugmann, M.; Mikielewicz, D. Selected studies of flow maldistribution in a minichannel plate heat exchanger. Arch. Thermodyn. 2017, 38, 135-148. [CrossRef] open in new tab
  34. Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3-17. [CrossRef] open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 147 times

Recommended for you

Meta Tags