Marine autonomous surface ship - control system configuration - Publication - Bridge of Knowledge

Search

Marine autonomous surface ship - control system configuration

Abstract

This paper addresses the problem of marine autonomous surface ship (MASS) control. The contribution of the paper is the development of a control system configuration, done assuming fully autonomous MASS operation under distinct operational conditions. The overview of hardware and software selection is included.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Cite as

Full text

download paper
downloaded 500 times
Publication version
Accepted or Published Version
License
Copyright (2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd.)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IFAC-PapersOnLine no. 52, pages 409 - 415,
ISSN: 2405-8963
Language:
English
Publication year:
2019
Bibliographic description:
Zubowicz T., Armiński K., Witkowska A., Śmierzchalski R.: Marine autonomous surface ship - control system configuration// IFAC-PapersOnLine -Vol. 52,iss. 8 (2019), s.409-415
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ifacol.2019.08.100
Bibliography: test
  1. Amazone (2018). Amazone prime. URL https://www.amazon.com/Amazon-Prime-Air/ b?ie=UTF8&node=8037720011. Accessed: 2018-11- open in new tab
  2. Bijlsma, S. (2002). On the applications of optimal con- trol theory and dynamic programming in ship routing. NAVIGATION: Journal of The Institute of Navigation, 49(2), 71-79. open in new tab
  3. Bole, A.G., Wall, A.D., and Norris, A. (2013). Radar and ARPA Manual: Radar, AIS and Target Tracking for Marine Radar Users. Butterworth-Heinemann. open in new tab
  4. Brdys, M.A. (2014). Integrated monitoring, control and security of critical infrastructure systems. Annual Re- views in Control, 38(1), 47-70. open in new tab
  5. Findeisen, W., Bailey, F., Brdys, M., Malinowski, K., Tatjewski, P., and Wozniak, A. (1980). Control and coordination in hierarchical systems. J. Wiley. open in new tab
  6. Fossen, T.I., Breivik, M., and Skjetne, R. (2003). Line- of-sight path following of underactuated marine craft. IFAC Proceedings Volumes, 36(21), 211-216. open in new tab
  7. Fossen, T.I. et al. (1994). Guidance and control of ocean vehicles, volume 199. Wiley New York. open in new tab
  8. Godhavn, J.M., Lauvdal, T., and Egeland, O. (1995). Hy- brid control in sea traffic management systems. In Inter- national Hybrid Systems Workshop, 149-160. Springer. open in new tab
  9. Grimble, M., Patton, R., and Wise, D. (1980). The design of dynamic ship positioning control systems using stochastic optimal control theory. Optimal Control Applications and Methods, 1(2), 167-202. open in new tab
  10. Hall, D.L. and Llinas, J. (1997). An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1), 6-23. open in new tab
  11. Heemels, W.P., De Schutter, B., and Bemporad, A. (2001). Equivalence of hybrid dynamical models. Automatica, 37(7), 1085-1091. open in new tab
  12. Hwang, I., Kim, S., Kim, Y., and Seah, C.E. (2010). A survey of fault detection, isolation, and reconfiguration methods. IEEE transactions on control systems technol- ogy, 18(3), 636-653. open in new tab
  13. Korbicz, J., Koscielny, J.M., Kowalczuk, Z., and Cholewa, W. (2012). Fault diagnosis: models, artificial intelli- gence, applications. Springer Science & Business Media. open in new tab
  14. Li, X.R. and Jilkov, V.P. (2003). Survey of maneuvering target tracking. part i. dynamic models. IEEE Transac- tions on Aerospace and Electronic Systems, 39(4), 1333- 1364. doi:10.1109/TAES.2003.1261132. open in new tab
  15. Maritime Safety Committee (2018). Final report anal- ysis of regulatory barriers to the use of autonomous ships. Technical Report MSC 99-INF.3, International Maritime Organization. Rolls-Royce (2018). open in new tab
  16. Rolls-royce and intel announce autonomous ship collaboration. URL https:// open in new tab
  17. Smierzchalski, R. and Michalewicz, Z. (2000). Modeling of ship trajectory in collision situations by an evolutionary algorithm. IEEE Transactions on Evolutionary Compu- tation, 4(3), 227-241. doi:10.1109/4235.873234. open in new tab
  18. Smierzchalski, R. (2013). Automatyzacja i sterowanie statkiem. Wydawnictwo Politechniki Gdańskiej. Sz lapczyński, R. (2009). Numerical algorithms of planning safe ship trajectories for ARPA systems, volume 95. Wydaw. PG.
  19. Tomera, M. (2010). Nonlinear controller design of a ship autopilot. Applied Mathematics and Computer Science, 20, 271-280. doi:10.2478/v10006-010-0020-8. open in new tab
  20. Tomera, M. (2017). Hybrid switching controller design for the maneuvering and transit of a training ship. Inter- national Journal of Applied Mathematics and Computer Science, 27(1), 63-77. open in new tab
  21. Triantafyllou, M., Bodson, M., and Athans, M. (1983). Real time estimation of ship motions using kalman filter- ing techniques. IEEE Journal of Oceanic Engineering, 8(1), 9-20. open in new tab
  22. Witkowska, A. andŚmierzchalski, R. (2018). Adaptive backstepping tracking control for an over-actuated DP marine vessel with inertia uncertainties. AMCS: Int. J. Appl. Math. Comput. Sci., 28(4), 679--693. open in new tab
  23. Zubowicz, T., Arminski, K., Obremski, D., and Pieńczewski, J. (2018). Redesign of the research platform for monitoring, control and security of critical infrastructure systems. In 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), 859-864. IEEE. open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 220 times

Recommended for you

Meta Tags