Abstract
The Zarankiewicz number z ( m, n ; s, t ) is the maximum number of edges in a subgraph of K m,n that does not contain K s,t as a subgraph. The bipartite Ramsey number b ( n 1 , · · · , n k ) is the least positive integer b such that any coloring of the edges of K b,b with k colors will result in a monochromatic copy of K n i ,n i in the i -th color, for some i , 1 ≤ i ≤ k . If n i = m for all i , then we denote this number by b k ( m ). In this paper we obtain the exact values of some Zarankiewicz numbers for quadrilateral ( s = t = 2), and we derive new bounds for diagonal multicolor bipartite Ramsey numbers avoiding quadrilateral. In particular, we prove that b 4 (2) = 19, and establish new general lower and upper bounds on b k (2).
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
ARS COMBINATORIA
no. 119,
pages 275 - 287,
ISSN: 0381-7032 - Language:
- English
- Publication year:
- 2015
- Bibliographic description:
- Dybizbański J., Dzido T., Radziszowski S.: On some Zarankiewicz numbers and bipartite Ramsey Numbers for Quadrilateral// ARS COMBINATORIA. -Vol. 119, (2015), s.275-287
- Verified by:
- Gdańsk University of Technology
seen 125 times
Recommended for you
On extremal sizes of locally k-tree graphs
- M. Borowiecki,
- P. Borowiecki,
- E. Sidorowicz
- + 1 authors