The Drop-in-Drop Encapsulation in Chitosan and Sodium Alginate as a Method of Prolonging the Quality of Linseed Oil - Publication - Bridge of Knowledge

Search

The Drop-in-Drop Encapsulation in Chitosan and Sodium Alginate as a Method of Prolonging the Quality of Linseed Oil

Abstract

Nowadays, the encapsulation of sensitive products by various techniques has become popular as a promising preservation method. In particular, this applies to oils with a high content of unsaturated fatty acids and a high susceptibility to deterioration. This work presents the possibility of using a chitosan and sodium alginate in the form of a hydrogel membrane to protect food ingredients such as linseed oil, which is stored in an aquatic environment. The obtained results showed the high efficiency of the coaxial method encapsulation, which did not affect the quality of the oil measured after encapsulation. The greatest protective effect was observed in the linseed oil–chitosan membrane system, in which the primary and secondary oxidation products content were 88% and 32% lower than in the control sample, respectively. The smallest changes of the fatty acid profile, conjugated dienes, and trienes were observed in the chitosan capsules with linseed oil compared to the control sample.

Citations

  • 9

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cite as

Full text

download paper
downloaded 63 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Polymers no. 10, pages 1 - 17,
ISSN: 2073-4360
Language:
English
Publication year:
2018
Bibliographic description:
Mania S., Tylingo R., Michałowska A.: The Drop-in-Drop Encapsulation in Chitosan and Sodium Alginate as a Method of Prolonging the Quality of Linseed Oil// Polymers. -Vol. 10, nr. 12 (2018), s.1-17
DOI:
Digital Object Identifier (open in new tab) 10.3390/polym10121355
Bibliography: test
  1. Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance-A review. Appetite 2008, 51, 456-467. [CrossRef] [PubMed] open in new tab
  2. Navdeep, K.; Devinder, P.S. Deciphering the consumer behaviour facets of functional foods: A literature review. Appetite 2017, 112, 167-187. [CrossRef] open in new tab
  3. Kris-Etherton, P.M.; Harris, W.S.; Appel, J.L. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747-2757. [CrossRef] [PubMed] open in new tab
  4. Riediger, N.D.; Othman, R.A.; Suh, M.; Moghadasian, H.M. A systemic review of the roles of n-3 fatty acids in health and disease. J. Am. Diet. Assoc. 2009, 109, 668-679. [CrossRef] [PubMed] open in new tab
  5. Astrup, A.; Dyerberg, J.; Elwood, P.; Hermansen, K.; Hu, F.B.; Jakobsen, M.U.; Kok, F.J.; Krauss, R.M.; Lecerf, J.M.; LeGrand, P.; et al. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: Where does the evidence stand in 2010? Am. J. Clin. Nutr. 2010, 93, 684-688. [CrossRef] [PubMed] open in new tab
  6. Khattab, R.Y.; Zeitoun, M.A. Quality evaluation of flaxseed oil obtained by different extraction techniques. LWT-Food Sci.Technol. 2010, 53, 338-345. [CrossRef] open in new tab
  7. Frankel, E.N. Lipid Oxidation, 2nd ed.; Woodhead Publishing Ltd.: Cambridge, UK, 1980; ISBN 9780857097927.
  8. Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Com.Rev. Food. Sci. Food Saf. 2016, 15, 143-182. [CrossRef] open in new tab
  9. Nazzaro, F.; Orlando, P.; Fratianni, F.; Coppola, R. Microencapsulation in food science and biotechnology. Curr. Opin. Chem. Biol. 2012, 23, 182-186. [CrossRef] open in new tab
  10. Tylingo, R.; Mania, S.; Szwacki, J. A novel for drop in drop edible oils encapsulation with chitosanusing a coaxial technique. React. Funct. Polym. 2016, 100, 64-72. [CrossRef] open in new tab
  11. Ghayempour, S.; Mortazavi, S.M. Fabrication of micro-nanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. J. Electrost. 2013, 71, 717-727. [CrossRef] open in new tab
  12. Moghaddam, M.K.; Mortazavi, S.M.; Khayamian, T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. J. Electrost. 2015, 73, 56-64. [CrossRef] open in new tab
  13. Radünz, M.; Helbig, E.; Dellinghausen Borges, C.; Gandra, T.K.V.; Gandra, E.A.A. A Mini-Review on Encapsulation of Essential Oils. J. Anal. Pharm. Res. 2018, 7, 00205. [CrossRef] open in new tab
  14. Özbek, Z.A.; Ergönü, P.G. A Review on Encapsulation of Oils. J. Sci. 2017, 13, 293-309. Available online: http://dergipark.gov.tr/download/article-file/318924 (accessed on 25 June 2018).
  15. Gasperini, L.; Mano, J.F.; Reis, R.L. Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 2014, 11, 20140817. [CrossRef] [PubMed] open in new tab
  16. Mi, F.-L.; Burnouf, T.; Lu, S.-Y.; Lu, Y.-J.; Lu, K.-Y.; Ho, Y.-C.; Kuo, C.-Y.; Chuang, E.-Y. Self-Targeting, Immune Transparent Plasma Protein Coated Nanocomplex for Noninvasive Photothermal Anticancer Therapy. Adv. Healthc. Mater. 2017, 6, 1700181. [CrossRef] [PubMed] open in new tab
  17. Satapathy, M.K.; Nyambat, B.; Chiang, C.-W.; Chen, C.-H.; Wong, P.-C.; Ho, P.-H.; Jheng, P.-R.; Burnouf, T.; Tseng, C.-L.; Chuang, E.-Y. A Gelatin Hydrogel-Containing Nano-Organic PEI-Ppy with a Photothermal Responsive Effect for Tissue Engineering Applications. Molecules 2018, 23, 1256. [CrossRef] [PubMed] open in new tab
  18. Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213-224. [CrossRef] open in new tab
  19. Lewińska, A.; Zebrowski, J.; Duda, M.; Gorka, A.; Wnuk, M. Fatty Acid Profile and Biological Activities of Linseed and Rapeseed Oils. Molecules 2015, 20, 22872-22880. [CrossRef] open in new tab
  20. PN-EN ISO 3960:2005 Standard. Animal and Vegetable Fats and Oils. Determination of Peroxide Value; Food and Agriculture Organization: Rome, Italy, 2005. open in new tab
  21. PN-EN ISO 6885:2000 Standard. Animal and Vegetable Fats and Oils. Determination of Anisidine Value; Food and Agriculture Organization: Rome, Italy, 2000. open in new tab
  22. PN-EN ISO 660:1998 Standard. Animal and Vegetable Fats and Oils. Determination of Acid Value and Acidity; Food and Agriculture Organization: Rome, Italy, 1998. open in new tab
  23. PN-EN ISO 12966-2:2017-05 Standard. Animal and Vegetable Fats and Oils-Gas Chromatography of Fatty Acid Methyl Esters-Part 2: Preparation of Methyl Esters of Fatty Acids; Food and Agriculture Organization: Rome, Italy, 2017. open in new tab
  24. Tynek, M.; Martysiak-Żurowska, D.; Parchem, K. Technologia i Biotechnologia Tłuszczów Jadalnych, 1st ed.; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2017; ISBN 978-83-7348-522-8.
  25. ISO 9936:2016 Standard. Animal and Vegetable Fats and Oils-Determination of Tocopherol and Tocotrienol contents by High-Performance Liquid Chromatography; open in new tab
  26. B S I Standards: London, UK, 2016.
  27. Wang, J.C.; Kinsella, J.E. Functional properties of novel proteins: Alfalfa leaf protein. J. Food Sci. 1976, 41, 286-292. [CrossRef] open in new tab
  28. ISO 10993-5:2009. Biological Evaluation of Medical Devices-Part 5: Test for In Vitro Cytotoxicity; open in new tab
  29. B S I Standards: London, UK, 2009. open in new tab
  30. Sano, M.; Hosoya, O.; Taoka, S.; Seki, T.; Kawaguchi, T.; Sugobayashi, K.; Juni, K.; Morimoto, K. Relationship between solubility of chitosan in alcoholic solution and it's gelation. Chem. Pharm. Bull. 1999, 47, 1044-1046. [CrossRef] open in new tab
  31. Braccini, I.; Pérez, S. Molecular Basis of Ca 2+ -Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2001, 2, 1089-1096. [CrossRef] [PubMed] open in new tab
  32. Qun, G.; Ajun, W. Effects of molecular weight, degree of acethylation and ionic strenght on surface tension of chitosan in dilute solution. Carbohydr. Polym. 2006, 64, 29-36. [CrossRef] open in new tab
  33. Dąbrowski, G.; Skrajda, M.; Tańska, M.; Roszkowska, B. Influence of Different Storage Conditions on Rapeseed Oils Quality. Am. J. Exp. Agric. 2016, 10, 1-12. [CrossRef] open in new tab
  34. PN-A-86908:2000 Standard. OlejeiTłuszczeRoślinneorazZwierzęce-RafinowaneolejeRoślinne; Polski Komitet Normalizacyjny: Warszawa, Poland, 2000.
  35. Codex Standard 19-1981. Codex Standard for Edible Fats and Oils not Covered by Individual Standards; FAO: Rome, Italy, 2013. open in new tab
  36. Makareviciene, V.; Janulis, P. Analizajakościolejówjadalnychorazobowiązkowewymagania. TłuszczeJadalne 1999, 34, 15-32. open in new tab
  37. Subramanian, R.; Nandini, K.E.; Sheila, P.M.; Gopalakrishna, A.G.; Raghavaro, S.M.S.; Nakajima, M.; Kimura, T.; Maekawa, T. Membrane processing of used frying oils. J. Am. Oil Chem. Soc. 2000, 77, 323-328. [CrossRef] open in new tab
  38. Wroniak, M.; Krygier, K.; Kaczmarczyk, M. Comparison of the quality of cold pressed and virgin rapeseed oils with industriallyobtained oils. Pol. J.FoodNutr. Sci. 2008, 1, 85-89. Available online: http://journal.pan. olsztyn.pl/pdfy/2008/1/58_1_13.pdf (accessed on 25 June 2018).
  39. Sielicka, M.M. Ocena Skuteczności Dodatku Substancji o WłaściwościachPrzeciwutleniających w Przedłużeniu Trwałości Oleju Lnianego Tłoczonego na Zimno. Ph.D. Thesis, Poznań University of Economics and Business, Poznań, Poland, 2014. Available online: http://www.wbc.poznan.pl/Content/315676/ Sielicka_Maria_Magdalena_rozprawa_doktorska.pdf (accessed on 14 July 2018).
  40. Orsavova, J.; Misurcova, L.; Ambrozva, J.V.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871-12890. [CrossRef] open in new tab
  41. Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169-186. [CrossRef] open in new tab
  42. White, N.D.G.; Mills, J.T.; Kenaschuk, E.O.; Oomah, B.D.; Dribnenki, P. Quality changes occurring in stored solin, high linolenic acid and standard flaxseed (Linumusitatissimum L.). Can. J. Plant. Sci. 1999, 79, 35-42. [CrossRef] open in new tab
  43. Ayton, J.; Mailer, R.J.; Graham, K. The Effect of Storage Conditions on Extra Virgin Olive Oil Quality.RIRDC Publication No. 12/024, RIRDC Project No. PRJ-02297. 2012. Available online: https://rirdc.infoservices. com.au (accessed on 15 August 2018).
  44. Zymon, M.; Strzetelski, J.; Pustowiak, H.; Sosis, E. Effect of freezing and frozen storage on fatty acid profile of calves' meat. Pol. J. Food Nutr. Sci. 2007, 57, 647-650. Available online: http://journal.pan.olsztyn.pl/ pdfy/2007/4C/Zymon_114.pdf (accessed on 14 July 2018). open in new tab
  45. Gliszczyńska-Świgło, A.; Sikorska, E.; Khmelinskii, I.; Sikorski, M. Tocopherol content in edible plant oils. Pol. J. Food Nutr. Sci. 2007, 57, 157-161. Available online: http://journal.pan.olsztyn.pl/fd.php?f=1022 (accessed on 8 October 2018).
  46. Ergönüla, P.G.; Köseoglub, O. Changes in α-, β-, γ-and δ-tocopherol contents of mostly consumed vegetable oils during refining process. CyTA J. Food. 2014, 12, 199-202. [CrossRef] open in new tab
  47. Mińkowski, K.; Grześkiewicz, S.; Jerzewska, M. Ocena wartości odżywczej olejów roślinnych o dużej zawartości kwasów linolenowych na podstawie składu kwasów tłuszczowych, tokoferolii steroli.ŻYWNOŚĆ Nauka Technol. Jakość 2011, 2, 124-135. Available online: http://w.pttz.org/zyw/wyd/czas/2011,%202(75) /11_Minkowski.pdf (accessed on 10 October 2018). open in new tab
  48. Kim, H.J.; Lee, M.Y.; Min, D.B. Singlet oxygen oxidation rates of alpha-, gamma-, and delta-tocopherols. J. Food Sci. 2006, 71, 465-468. [CrossRef] open in new tab
  49. Goffman, F.D.; Möllers, C. Changes in Tocopherol and Plastochromanol-8 Contentsin Seedsand Oil ofOilseed Rape (Brassica napus L.) during Storage AsInfluenced by Temperature and Air Oxygen. J. Agric. Food Chem. 2000, 48, 1605-1609. [CrossRef] [PubMed] open in new tab
  50. Wagner, K.H.; Elmadfa, I. Effect of tocopherols and their mixtures on the oxidative stability of olive oil and linseed oil under heating. Eur. J. Lipid. Sci. Technol. 2000, 102, 624-629. [CrossRef] open in new tab
  51. Erich, S.J.F.; Laven, J.; Pel, L.; Huinink, H.P.; Kopinga, K. Influence of catalyst type on the curing process and network structure of alkyd coatings. Polymer 2006, 47, 1141-1149. [CrossRef] open in new tab
  52. Tańska, M.; Rotkiewicz, D.; Ambrosiewicz, M. Comparison of stability of flax and rapeseed cold-pressed oils. Bromat. Chem. Toksykol. 2011, XLIV, 521-527. Available online: http://ptf.content-manager.pl/pub/File/ Bromatologia/2015/nr%203/Bromatologia%203_2015%20-%20scalona.pdf (accessed on 17 September 2018).
  53. Wroniak, M.; Cenkier, J. Comparison of the sensory properties,physico-chemical quality and oxidative stability of selected cold-pressed oils. Zesz. Probl. Nauk Roln. 2015, 581, 123-133. Available online: http://yadda.icm.edu.pl/ yadda/element/bwmeta1.element.agro-39206969-124f-4d79-ba33-c880a911fcb8/c/581-13_123.pdf (accessed on 18 September 2018).
  54. Pariente, J.L.; Kim, B.S.; Atala, A. In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J. Biomed. Mater. Res. 2001, 55, 33-39. [CrossRef] open in new tab
  55. Kouchak, M.; Handali, S.; Boroujeni, B.N. Evaluation of the Mechanical Properties and Drug Permeability of Chitosan/Eudragit RL Composite Film. Osong Public Health Res Perspect. 2015, 6, 14-19. [CrossRef] [PubMed] open in new tab
  56. Xiao, Q.; Lu, K.; Tong, Q.; Liu, C. Barrier properties and microstructure of pullulan-alginate-based films. J. Food Process. Eng. 2015, 38, 155-161. [CrossRef] open in new tab
  57. Desobry, S.; Debea1ufort, F. Encapsulation of Flavours, Nutraceuticals, and Antibacterials. In Book Handbook of Encapsulation and Controlled Released, 1st ed.; Mishra, M., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 801-824. ISBN 978-1-4822-3234-9. open in new tab
  58. Caner, C.; Vergano, P.J.; Wiles, J.L. Chitosan film mechanical and permeation propertiesas affected by acid, plasticizer, and storage. J. Sci. 1998, 63, 1049-1053. open in new tab
  59. Hong, S.I.; Krochta, J.M. Oxygen barrier performance of whey-protein-coated plastic films as affected by temperature, relative humidity, base film and protein type. J. Food Eng. 2006, 77, 739-745. [CrossRef] open in new tab
  60. Sánchez, V.E.; Bartholomai, G.B.; Pilosof, A.M.R. Rheological Properties of Food Gums t as Related to their Water Binding Capacity and to Soy Protein Interaction. Lebensm. Wtss. Technol. 1995, 28, 380-385. [CrossRef] open in new tab
  61. Cho, Y.-I.; No, H.-K.; Meyers, S.P. Physicochemical Characteristics and Functional Properties of Various Commercial Chitin and Chitosan Products. J. Agric. Food Chem. 1998, 46, 3839-3843. [CrossRef] open in new tab
  62. Castejón, P.; Habibi, K.; Saffar, A.; Ajji, A.; Martínez, A.B.; Arencón, D. Polypropylene-Based Porous Membranes: Influence of Polymer Composition, Extrusion Draw Ratio and Uniaxial Strain. Polymers 2018, 10, 33. [CrossRef] open in new tab
  63. Yao, Z.-A.; Chen, F.-J.; Cui, H.-L.; Lin, T.; Guo, N.; Wu, H.-G. Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats. Neural Regen. Res. 2018, 13, 502-509. [CrossRef] © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Sources of funding:
  • Grant dla pracowników naukowych finansowany przez Dziekana Wydziału Chemicznego Politechniki Gdańskiej (032408T103)
Verified by:
Gdańsk University of Technology

seen 196 times

Recommended for you

Meta Tags