Filters
total: 13
Best results in : Research Potential Pokaż wszystkie wyniki (12)
Search results for: newtonian system
-
Zespół Katedry Fizyki Teoretycznej i Informatyki Kwantowej
Research PotentialPrace naukowe prowadzone w Katedrze dotyczą współczesnych zagadnień fizyki teoretycznej i informatyki kwantowej. W ramach współpracy międzynarodowej stworzony został w Katedrze program komputerowy umożliwiający obliczanie relatywistycznych przejść w atomach i jonach. Jego celem jest dostarczenie danych atomowych potrzebnych do interpretacji pomiarów plazmy astrofizycznej i laboratoryjnej. Dane atomowe obejmują nie tylko siły oscylatorów...
-
Zespół Katedry Analizy Nieliniowej i Statystyki
Research PotentialW Katedrze prowadzone są badania w trzech wiodących kierunkach. Pierwszy dotyczy zastosowania metod topologicznych i wariacyjnych w układach dynamicznych, w teorii równań różniczkowych zwyczajnych i cząstkowych oraz w teorii bifurkacji. Drugim kierunkiem badań Katedry jest zastosowanie rachunku prawdopodobieństwa i teorii aproksymacji. Ostatnią specjalizacją jest Geometria i Grafika Komputerowa, która istnieje od 2014 roku. Wybór...
-
Zespół Katedry Rachunku Prawdopodobieństwa i Biomatematyki
Research Potential* modele ryzyka i ich zastosowania * probabilistyczne i grafowe metody w biologii * stochastyczne równania różniczkowe * statystyczna analiza danych * teoria grafów * teoria i zastosowania stochastycznych układów dynamicznych w biologii i medycynie
Best results in : Business Offer Pokaż wszystkie wyniki (1)
Search results for: newtonian system
-
Laboratorium Materiałów Polimerowych
Business OfferLaboratorium jest wyposażone w:; • plastometr do badań wskaźnika szybkości płynięcia uplastycznionego tworzywa, ; • młot do badań udarności materiałów, ; • wtryskarkę hydrauliczną z urządzeniami peryferyjnymi wymaganymi do uruchomienia produkcji znormalizowanych próbek do badań wytrzymałościowych,; • zestaw urządzeń przetwórczo - pomiarowych;
Other results Pokaż wszystkie wyniki (67)
Search results for: newtonian system
-
Connecting orbits for a periodically forced singular planar Newtonian system
PublicationW niniejszym artykule badamy problem istnienia i krotności rozwiązań homoklinicznych i heteroklinicznych dla nieautonomicznych układów Newtonowskich na płaszczyźnie z potencjałem okresowym ze względu na zmienną czasową, mającym maksimum globalne właściwe przyjmowane w dwóch punktach płaszczyzny i punkt osobliwy (studnię nieskończonej głębokości), w otoczeniu którego potencjał spełnia warunek Gordona (gradient potencjału ze względu...
-
Homoclinic orbits for an almost periodically forced singular Newtonian system in R^3
Publication. This work uses a variational approach to establish the existence of at least two homoclinic solutions for a family of singular Newtonian systems in R^3 which are subjected to almost periodic forcing in time variable
-
Homoclinic and Heteroclinic Orbits for a Class of Singular Planar Newtonian Systems
PublicationThe study of existence and multiplicity of solutions of differential equations possessing a variational nature is a problem of great meaning since most of them derives from mechanics and physics. In particular, this relates to Hamiltonian systems including Newtonian ones. During the past thirty years there has been a great deal of progress in the use of variational methods to find periodic, homoclinic and heteroclinic solutions...
-
A note on an approximative scheme of finding almost homoclinic solutions for Newtonian systems
PublicationIn this work we will be concerned with the existence of an almost homoclinic solution for a perturbed Newtonian system in a finite dimensional space. It is assumed that a potential is C^1 smooth and its gradient is bounded with respect to a time variable. Moreover, a forcing term is continuous, bounded and squere integrable. We will show that the appproximative scheme due to J. Janczewska for a time periodic potential extends to...
-
An approximative scheme of finding almost homoclinic solutions for a class of Newtonian systems
PublicationW niniejszej pracy badamy istnienie rozwiązań prawie homoklinicznych (ang. almost homoclinic solutions) dla pewnej klasy układów Newtona. Rozwiązanie prawie homokliniczne otrzymujemy jako granicę ciągu rozwiązań okresowych dla pewnego ciągu równań różniczkowych.