Linear impedance of Bi2VO5.5 ceramic prepared by traditional melt quenching technique measured with impedance spectroscopy method at low temperature region - Open Research Data - Bridge of Knowledge

Search

Linear impedance of Bi2VO5.5 ceramic prepared by traditional melt quenching technique measured with impedance spectroscopy method at low temperature region

Description

The linear electrical properties of Bi2VO5.5 ceramic prepared by traditional melt quenching technique was measured by impedance spectroscopy method. 

Bi2VO5.5 ceramic was prepared using two step synthesis:

In the first step, the polycrystalline Bi2VO5.5 ceramic was synthesised via a conventional solid state reaction route. The stoichiometric mixture of initial powders of Bi2O3 and V2O5 were ball-milled in pure acetone for 6 h. The milling was performed in steps of 1 h with rest intervals of 10 min. The mixture was initially heated up to 770 K and then to 1020 K in air. It was kept at this temperature for 24 h and grinded next. The calcined powder was mixed with a small amount of ethyl alcohol binder and cold-pressed into pellets (12 mm in diameter and 2–3 mmin thickness) under a compacting pressure of 26 kNcm−2. The obtained pellets were sintered at 1070 K for 24 h with heating and cooling rates of 50 Kh−1.

In the second step, the obtained Bi2VO5.5 was powdered in mortar and next melted using the conventional melt quenching technique. The melting was conducted in alumina crucibles at 1173 K for few minutes. The melt was poured onto a preheated (573 K) brass plate and pressed by another plate to obtain flat circular disks.

For the electrical measurements gold electrodes were evaporated at the preheated samples. Impedance measurements were carried out in the temperature range from 153 K to 423 K, in the frequency range from 10mHz to 10 MHz and with the ac voltage of 1 Vrms with Concept 40 broadband dielectric spectrometer.

Dataset file

105.zip
150.0 kB, S3 ETag 7e784cae124a27ef0ddae7e57354dac6-1, downloads: 56
The file hash is calculated from the formula
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} where a single part of the file is 512 MB in size.

Example script for calculation:
https://github.com/antespi/s3md5
download file 105.zip

File details

License:
Creative Commons: by 4.0 open in new tab
CC BY
Attribution
Raw data:
Data contained in dataset was not processed.

Details

Year of publication:
2015
Verification date:
2021-07-14
Dataset language:
English
Fields of science:
  • materials engineering (Engineering and Technology)
DOI:
DOI ID 10.34808/tfrh-2565 open in new tab
Verified by:
Gdańsk University of Technology

Keywords

References

Cite as

seen 118 times