Nonlinear impedance of 58(2Bi2O3-V2O5)-42SrB4O7 glass heat-treated for 3 hours at 693 K, measured with impedance spectroscopy method at low temperature region
Description
The nonlinear electrcial properties of partially crystallized 58(2Bi2O3-V2O5)-42SrB4O7 glass was measured by impedance spectroscopy method.
The polycrystalline strontium–borate, SrB4O7 was synthesized via a solid state reaction route that involved heating stoichiometric mixtures of analytical grade SrCO3 and H3BO3 at 1073 K for 12 hours. Next, sample of a composition of 58(2Bi2O3-V2O5)-42SrB4O7 (in %mol) was prepared from reagent-grade Bi2O3, V2O5 and preprepared SrB4O7. Samples of glass were prepared by the conventional melt quenching technique. The melting was conducted in alumina crucibles at 1373 K for 2 hours. The melt was poured onto a preheated (573 K) brass plate and pressed by another plate to obtain flat circular disks of 1–2 mm thickness and 20–30 mm in diameter. Samples was partially crystallized by heat treating in air at a temperature of 693 K for 3 and then kept in the furnace to cool to room temperature.
For the electrical measurements gold electrodes were evaporated at the preheated samples. Impedance measurements were carried out in the frequency range from 1 mHz to 1 MHz and the temperature range from 183 K to 423 K, with the ac voltage of 1 Vrms with Concept 40 broadband dielectric spectrometer.
The higher harmonic components (harmonic 0, harmonic 1 and harmonic 2) were measured up to frequency of 1000 Hz. Here the impedance for harmonic components was defined as the ratio of the voltage base wave to the n-th harmonic current component: Zn∗= U0∗/In∗, where Zn⁎ including the base wave generally depend on the sample voltage U1⁎ base wave amplitude. From Zn⁎ allother independent variables are calculated. The dependence of current density on the cosinusoidal electric field E(t)= E0cos(ωt) leads to the following expression:
j´ = σ´0hE0 cos (ωt) + σ´1hE0 cos (2ωt) + σ´2hE0 cos (3ωt) + …
Where σ´0h denotes base conductivity, while σ´1h, σ´2h etc. are higher harmonics conductivity. The admittivity for harmonic components with n ≥1, is calculated from relation σ⁎n = i2πfε0ε⁎n.
Dataset file
hexmd5(md5(part1)+md5(part2)+...)-{parts_count}
where a single part of the file is 512 MB in size.Example script for calculation:
https://github.com/antespi/s3md5
File details
- License:
-
open in new tabCC BYAttribution
- Raw data:
- Data contained in dataset was not processed.
Details
- Year of publication:
- 2021
- Verification date:
- 2021-06-21
- Dataset language:
- English
- Fields of science:
-
- materials engineering (Engineering and Technology)
- DOI:
- DOI ID 10.34808/rzb6-4959 open in new tab
- Verified by:
- Gdańsk University of Technology
Keywords
References
- publication STRUKTURA ORAZ WŁAŚCIWOŚCI ELEKTRYCZNE MATERIAŁÓW SZKLISTYCH ZAWIERAJĄCYCH GRANULE FERROELEKTRYKA Bi2VO5,5
Cite as
Authors
seen 88 times