Visualization of the surface of the Nafion membrane - Open Research Data - Bridge of Knowledge

Search

Visualization of the surface of the Nafion membrane

Description

Fuel cells use the chemical energy of hydrogen or other fuels to produce electricity. If the fuel is hydrogen, the only products are electricity, water and heat. Fuel cells are unique in the variety of their potential applications, they can use a wide variety of fuels. They are also highly scalable devices that can power both cars and mobile phones. Fuel cells can operate at a higher efficiency than internal combustion engines and can convert chemical energy directly into electricity with efficiency in excess of 60%. Fuel cells have lower or no emissions compared to internal combustion engines. Hydrogen fuel cells emit only water, responding to critical climate challenges as they emit no carbon dioxide. There are also no air pollutants that cause smog and cause health problems at the site of operation. Fuel cells are also quiet during operation as they have few moving parts. Despite all the above-mentioned advantages, work is still underway to improve the described technology, aimed at increasing efficiency, combating the phenomena of electrode corrosion or improving the dynamics of cell operation. The complex electrochemical system, which is the ion exchange membrane and electrodes (MEA), is responsible for the efficient operation of the described devices [1]. The study of the micro and nanostructure of the membranes can contribute to the assessment of their usefulness and the estimation of the efficiency in the operating conditions of the cell. This collection contains the results of preliminary topographic imaging in the semi-contact variant, allowing to estimate the coarse structure of the object and assess how much magnification should be used. The collection includes 14 images obtained with the NSG30 probe.

Reference:

[1] K. Darowicki, Ł. Gawel, M. Mielniczek, A. Zieliński, E. Janicka, J. Hunger, L. Jorissen, The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream, APPLIED ENERGY, 279 (2020) 115868

Dataset file

Set5.mdt
1.8 MB, S3 ETag 71a8d67e3b4315db7b24631203284850-1, downloads: 21
The file hash is calculated from the formula
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} where a single part of the file is 512 MB in size.

Example script for calculation:
https://github.com/antespi/s3md5

File details

License:
Creative Commons: by 4.0 open in new tab
CC BY
Attribution
Raw data:
Data contained in dataset was not processed.
Software:
Gwyddion

Details

Year of publication:
2021
Verification date:
2021-08-06
Dataset language:
English
Fields of science:
  • materials engineering (Engineering and Technology)
  • chemical sciences (Natural sciences)
DOI:
DOI ID 10.34808/12y2-h217 open in new tab
Series:
Verified by:
Gdańsk University of Technology

Keywords

References

Cite as

seen 102 times