A compact spline-enhanced monopole antenna for broadband/multi-band and beyond UWB applications - Publication - MOST Wiedzy

Search

A compact spline-enhanced monopole antenna for broadband/multi-band and beyond UWB applications

Abstract

In this work, a compact monopole antenna for broadband/multi-band and beyond ultra- wideband (UWB) communication has been proposed. The structure is based on a spline-enhanced radiator with a broadband feed and a modified ground plane. Rigorous design optimization of the radiator has been performed in a two-stage framework where optimization of the structure with respect to electrical performance is followed by explicit miniaturization using a constrained objective function. Two compact radiators characterized by footprints of 404 mm 2 and 322 mm 2 , as well as frequency ranges from 2.8 GHz to 34.9 GHz and from 2.9 GHz to 33.9 GHz have been designed. Except for a relatively narrow frequency range in Ka band (from 34.9 GHz to 37.8 GHz), the larger structure is capable of operating for up to 80 GHz. Owing to a simple topology, small size and broadband operation, the presented antennas are of potential use in mobile terminals dedicated to support various wireless technologies including Internet of Things, WiFi, or UWB-based localization services. The proposed radiators have been benchmarked against other broadband/beyond UWB antennas from the literature. Electrical and field characteristics of the proposed structures have been confirmed through measurements of the fabricated prototypes.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS no. 146,
ISSN: 1434-8411
Language:
English
Publication year:
2022
Bibliographic description:
Czyż M., Olencki J., Bekasiewicz A.: A compact spline-enhanced monopole antenna for broadband/multi-band and beyond UWB applications// AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS -Vol. 146, (2022), s.154111-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.aeue.2022.154111
Verified by:
Gdańsk University of Technology

seen 49 times

Recommended for you

Meta Tags