A novel approach to enhance high optically active L-lactate production from food waste by landfill leachate - Publication - Bridge of Knowledge

Search

A novel approach to enhance high optically active L-lactate production from food waste by landfill leachate

Abstract

The recycling of food waste (FW) through anaerobic fermentation into lactic acid (LA), with two isomers L-LA and D-LA, aligns with the principles of a bio-based circular economy. However, FW fermentation is often limited by competing pathways, acidification inhibition, and trace metals deficiency. This study investigates the introduction of landfill leachate, containing buffering agents (ammonia) and trace metals, into FW fermentation. Various dosages of landfill leachate, ranging from 90 (LN-90) to 450 mg/L (LN-450) based on inclusive ammonia calculation, were employed. Results showed that LA production peaked at 43.65 ± 0.57 g COD/L in LN-180 on day 6, with a high optical activity of L-LA at 92.40 ± 1.15 %. Fermentation pathway analysis revealed that landfill leachate amendment enhances hydrolysis (as evidenced by increased activity of amylase, α-glucosidase, and protease) and glycolysis (resulting in enhanced utilization of carbohydrates and glucose). The inclusive ammonia in leachate plays a crucial role as a buffer, maintaining optimal pH conditions (5–7), thereby reducing volatile fatty acid production and thus intensifying LA orientations. The increased activity of L-lactate dehydrogenase (L-LA generation) and decreased NAD-independent lactate dehydrogenase (LA consumption) in properly dosed leachate further explained the high accumulation of L-LA. Dominance of lactic acid bacteria, including Streptococcus, Enterococcus, Klebsiella, Bifidobacterium, Bavariicoccus, and Lacticaseibacillus, accounted for 91.08% (LN-90), while inhibitory effects were observed in LN-450 (4.45%). Functional gene analysis further supported the enhanced glycolysis, L-lactate dehydrogenase, and nitrogen assimilation. Finally, a network analysis indicates a beneficial effect on the genus Enterococcus and Klebsiella by landfill leachate addition. This study demonstrates the efficiency of utilizing landfill leachate to enhance LA recycling from FW fermentation, aligning with the concept of circular economy by transforming waste into valuable resources.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 4 times
Publication version
Accepted or Published Version
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jenvman.2024.122497
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF ENVIRONMENTAL MANAGEMENT no. 370,
ISSN: 0301-4797
Language:
English
Publication year:
2024
Bibliographic description:
Zhang W., Shi J., Li Y., Ma Y., Khanzada A., Al-Hazmi H., Xu X., Li X., Hassan G. K., Xue G., Mąkinia J.: A novel approach to enhance high optically active L-lactate production from food waste by landfill leachate// JOURNAL OF ENVIRONMENTAL MANAGEMENT -, (2024), s.122497-122497
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jenvman.2024.122497
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 39 times

Recommended for you

Meta Tags