An Adversarial Machine Learning Approach on Securing Large Language Model with Vigil, an Open-Source Initiative
Abstract
Several security concerns and efforts to breach system security and prompt safety concerns have been brought to light as a result of the expanding use of LLMs. These vulnerabilities are evident and LLM models have been showing many signs of hallucination, repetitive content generation, and biases, which makes them vulnerable to malicious prompts that raise substantial concerns in regard to the dependability and efficiency of such models. It is vital to have a complete grasp of the complex behaviours of malicious attackers in order to build effective strategies for protecting modern artificial intelligence (AI) systems through the development of effective tactics. The purpose of this study is to look into some of these aspects and propose a method for preventing devastating possibilities and protecting LLMs from potential threats that attackers may pose. Vigil is an open-source LLM prompt security scanner, that is accessible as a Python library and REST API, specifically to solve these problems by employing a sophisticated adversarial machine-learning algorithm. The entire objective of this study is to make use of Vigil as a security scanner. and asses its efficiency. In this case study, we shed some light on Vigil, which effectively recognises and helps LLM prompts by identifying two varieties of threats: malicious and benign.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (4)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.procs.2024.09.486
- License
- open in new tab
Keywords
Details
- Category:
- Conference activity
- Type:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Published in:
-
Procedia Computer Science
no. 246,
pages 686 - 695,
ISSN: 1877-0509 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Pokhrel K., Sanín C., Islam M. R., Szczerbicki E.: An Adversarial Machine Learning Approach on Securing Large Language Model with Vigil, an Open-Source Initiative// / : , 2024,
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.procs.2024.09.486
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 20 times
Recommended for you
Approach to security assessment of critical infrastructures' information systems
- R. Leszczyna,
- I. Nai Fovino,
- M. Masera
Security Information Sharing for the Polish Power System
- R. Leszczyna,
- M. Łosiński,
- R. Małkowski
News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT
- M. N. R. Khan,
- M. R. Islam,
- C. Sanin
- + 1 authors