Abstract
This paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to their predecessors. Despite the advances made, further improvements are desired to achieve even better performance in this field. The conducted experiments provide insights into how each modification affects the classification accuracy of the architectures, which is a measure of their ability to distinguish between stego and cover images. Based on the obtained results, potential enhancements are identified that future CNN designs could adopt to achieve higher accuracy while minimizing their complexity compared to current architectures. The impact of modifications on each model’s performance has been found to vary depending on the tested architecture and the steganography embedding method used.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (2)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Conference activity
- Type:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Martyniak R., Czaplewski B.: Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks// / : , 2024,
- DOI:
- Digital Object Identifier (open in new tab) 10.1007/978-3-031-63751-3_4
- Sources of funding:
-
- Statutory activity/subsidy
- Verified by:
- Gdańsk University of Technology
seen 53 times
Recommended for you
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation
- M. Kassjański,
- M. Kulawiak,
- T. Przewoźny
- + 7 authors