Abstract
Klasyfikacja obrazów jest zagadnieniem z dziedziny widzenia komputerowego. Polega na całościowej analizie obrazu i przypisaniu go do jednej lub wielu kategorii (klas). Współczesne rozwiązania tego problemu są w znacznej części realizowane z wykorzystaniem konwolucyjnych głębokich sieci neuronowych (convolutional neural network, CNN). W tym rozdziale opisano przełomowe architektury CNN oraz ewolucję state-of-the-art w klasyfikacji obrazów na przestrzeni lat 2014--2021. Łącznie opisano 28 topologii głębokich konwolucyjnych sieci neuronowych, należących do 7 rodzin: EfficientNet, ResNet, DenseNet, Inception, NasNet, MobileNet oraz VGG.
Author (1)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Monographic publication
- Type:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku o zasięgu krajowym
- Language:
- Polish
- Publication year:
- 2022
- Bibliographic description:
- Zawora K.: Architektury klasyfikatorów obrazów// Algorytmy i zastosowania inteligencji obliczeniowej/ : , , s.45-76
- Verified by:
- Gdańsk University of Technology
seen 82 times