Artificial neural network prophecy of ion exchange process for Cu (II) eradication from acid mine drainage - Publication - Bridge of Knowledge

Search

Artificial neural network prophecy of ion exchange process for Cu (II) eradication from acid mine drainage

Abstract

The removal of heavy metal ions from wastewater was found to be significant when the cation exchange procedure was used effectively. The model of the cation exchange process was built using an artificial neural network (ANN). The acid mine drainage waste’s Cu(II) ion was removed using Indion 730 cation exchange resin. Experimental data from 252 cycles were recorded. In a column study, 252 experimental observations validated the three-layered ANN module’s ion exchange process forecasting. The model design for the ion exchange process focuses on the process’s major constraints, such as initial flow rate, initial concentration of Cu (II) ions, and AMDW residence time in the column, to fit the working environment. The maximum metal ion removal efficiency was found at 5 LPH initial flowrate, 5 pH suspension, and 60 cm bed height. With a regression value of 0.99, the proposed model matches experimental values. A hidden layer with 6 neurons and an outer layer with a linear transfer function can predict adsorption efficiency using the three-layer ANN module’s backpropagation (BP) technique. A linear method was used to construct the correlation between dependent and independent variables. The BP-ANN module’s coefficient of correlation was 0.99 with accurate dependent variable predictions. In a feedforward neural network, the current research’s ANN module predicts the best conditions for Cu(II) ion extraction.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Authors (7)

  • Photo of  Vikas S. Hakke

    Vikas S. Hakke

    • Department of Chemical Engineering, National Institute of Technology, Warangal, TS, 506004, India
  • Photo of  R. W. Gaikwad

    R. W. Gaikwad

    • Department of Chemical Engineering, Jawaharlal Nehru Engineering College, Aurangabad, 431003, MS, India
  • Photo of  A. R. Warade

    A. R. Warade

    • Department of Chemical Engineering, Pravara Rural Engineering College Loni, Ahmednagar, 413204, MS, India
  • Photo of  Shirish H. Sonawane

    Shirish H. Sonawane

    • Department of Chemical Engineering, National Institute of Technology, Warangal, TS, 506004, India
  • Photo of  S.s. Sonawane

    S.s. Sonawane

    • Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440012, MS, India
  • Photo of  V. S. Sapkal

    V. S. Sapkal

    • Department of Chemical Engineering, Jawaharlal Nehru Engineering College, Aurangabad, 431003, MS, India

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
International Journal of Environmental Science and Technology no. 20, pages 13479 - 13490,
ISSN: 1735-1472
Language:
English
Publication year:
2023
Bibliographic description:
Hakke V. S., Gaikwad R. W., Warade A. R., Sonawane S. H., Boczkaj G., Sonawane S., Sapkal V. S.: Artificial neural network prophecy of ion exchange process for Cu (II) eradication from acid mine drainage// International Journal of Environmental Science and Technology -Vol. 20, (2023), s.13479-13490
DOI:
Digital Object Identifier (open in new tab) 10.1007/s13762-023-04818-8
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 95 times

Recommended for you

Meta Tags