Assessment of Thermal Stresses in Asphalt Mixtures at Low Temperatures Using the Tensile Creep Test and the Bending Beam Creep Test - Publication - MOST Wiedzy


Assessment of Thermal Stresses in Asphalt Mixtures at Low Temperatures Using the Tensile Creep Test and the Bending Beam Creep Test


Thermal stresses are leading factors that influence low-temperature cracking behavior of asphalt pavements. During winter, when the temperature drops to significantly low values, tensile thermal stresses develop as a result of pavement contraction. Creep test methods can be suitable for the assessment of low-temperature properties of asphalt mixtures. To evaluate the influence of creep test methods on the obtained low-temperature properties of asphaltmixtures, three point bending and uniaxial tensile creep tests were applied and the master curves of stiffness modulus were analyzed. On the basis of creep test results, rheological parameters describing elastic and viscous properties of the asphalt mixtures were determined. Thermal stresses were calculated and compared to the tensile strength of the material to obtain the failure temperature of the analyzed asphalt mixtures. It was noted that lower strain values of creep curves were obtained for the Tensile Creep Test (TCT) than for the Bending Beam Creep Test (BBCT), especially at lower temperatures. Results of thermal stress calculations indicated that higher reliability was obtained for the viscoelastic Monismith method based on the TCT results than for the simple quasi-elastic solution of Hills and Brien. The highest agreement with the TSRST results was also obtained for the Monismith method based on the TCT results. No clear relationships were noted between the predicted failure temperature and different methods of thermal stress calculations.


  • 1


  • 0

    Web of Science

  • 1



artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Applied Sciences-Basel no. 9, edition 5, pages 1 - 20,
ISSN: 2076-3417
Publication year:
Bibliographic description:
Pszczoła M., Jaczewski M., Szydłowski C.: Assessment of Thermal Stresses in Asphalt Mixtures at Low Temperatures Using the Tensile Creep Test and the Bending Beam Creep Test// Applied Sciences-Basel. -Vol. 9, iss. 5 (2019), s.1-20
Digital Object Identifier (open in new tab) 10.3390/app9050846
Bibliography: test
  1. Jung, D.; Vinson, T.S. Thermal Stress Restrained Specimen Test to Evaluate Low-Temperature Cracking of Asphalt-Aggregate Mixtures; Transportation Research Record No. 1417; Transportation Research Board; National Academy Press: Washington, DC, USA, 1993; pp. 12-20.
  2. Judycki, J. A new viscoelastic method of calculation of low-temperature thermal stresses in asphalt layers of pavements. Int. J. Pavement Eng. 2016, 19, 24-36. [CrossRef] open in new tab
  3. Vinson, T.S.; Janoo, V.C.; Haas, R.C.G. Low Temperature and Thermal Fatigue Cracking; Summary Report No SR-OSU-A-003A-89-1; Strategic Highway Research Program, National Research Council: Washington, DC, USA, 1989. open in new tab
  4. Pucci, T.; Dumont, A.-G.; Di Benedetto, H. Thermomechanical and Mechanical Behaviour of Asphalt Mixtures at Cold Temperature: Road and Laboratory Investigations. Road Mater. Pavement Des. 2004, 5, 45-72. [CrossRef] open in new tab
  5. Pszczola, M.; Judycki, J. Comparison of calculated and measured thermal stresses in asphalt concrete. Balt. J. Road Bridge Eng. 2015, 10, 39-45. [CrossRef] open in new tab
  6. Pszczola, M.; Szydlowski, C. Influence of Bitumen Type and Asphalt Mixture Composition on Low-Temperature Strength Properties According to Various Test Methods. Materials 2018, 11, 2118. [CrossRef] [PubMed] open in new tab
  7. Bai, M. Investigation of low-temperature properties of recycling of SBS modified asphalt binder. Constr. Build. Mater. 2017, 150, 766-773. [CrossRef] open in new tab
  8. Kowalski, K.J.; Król, J.B.; Bańkowski, W.; Radziszewski, P.; Sarnowski, M. Thermal and Fatigue Evaluation of Asphalt Mixtures Containing RAP Treated with a Bio-Agent. Appl. Sci. 2017, 7, 216. [CrossRef] open in new tab
  9. Sybilski, D.; Bańkowski, W.; Mirski, K.; Hododecka, R.; Wróbel, A. Rubber-bitumen granulate for asphalt pavements-Laboratory comparative analysis. In Proceedings of the 5th International Conference on Bituminous Mixtures and Pavements, Thessaloniki, Greece, 1-3 June 2011; pp. 1413-1421.
  10. Pszczoła, M.; Jaczewski, M.; Szydłowski, C.; Judycki, J.; Dołżycki, B. Evaluation of low temperature properties of rubberized asphalt mixtures. Procedia Eng. 2017, 172, 897-904. [CrossRef] open in new tab
  11. Zhao, L.; Xu, G.; Zhang, M. Low-temperature creep properties for fibre-asphalt mixtures. In Proceedings of the Institution of Civil Engineers-Transport; open in new tab
  12. Thomas Telford Ltd.: London, UK, 2017; Volume 170, pp. 152-157. [CrossRef] open in new tab
  13. Mackiewicz, P. Thermal stress analysis of joined plane in concrete pavements. Appl. Therm. Eng. 2014, 73, 1169-1176. [CrossRef] open in new tab
  14. Chaubane, B.; Tia, M. Analysis and verification of thermal-gradient effects on concrete pavement. J. Transp. Eng. 1995, 121, 75-81. [CrossRef] open in new tab
  15. Muki, R.; Sternberg, E. On transient thermal stresses in viscoelastic materials with temperature-dependent properties. J. Appl. Mech. 1961, 28, 193-207. [CrossRef] open in new tab
  16. Lee, E.H.; Rogers, T.G. Solution of viscoelastic stress analysis problems using measured creep or relaxation functions. J. Appl. Mech. 1963, 30, 127-133. [CrossRef] open in new tab
  17. Humpreys, J.S.; Martin, C.J. Determination of transient thermal stresses in a slab with temperature-dependent viscoelastic properties. Trans. Soc. Rheol. 1963, 7, 155-169. [CrossRef] open in new tab
  18. Monismith, C.L.; Secor, G.A.; Secor, K.E. Temperature Induced Stresses and Deformations in Asphalt Concrete. J. Assoc. Asphalt Paving Technol. 1965, 34, 248-285.
  19. Wittmann, F.H.; Knappe, O.W.; Schuhbauer, A. Temperature induced stresses in concrete. Cem. Concr. Res. 1978, 8, 703-710. [CrossRef] open in new tab
  20. Wittmann, F.H.; Schwanke, H. Influence of composition on temperature induced stresses in asphalt concrete mixtures. Cem. Concr. Res. 1979, 9, 497-500. [CrossRef] open in new tab
  21. Marasteanu, M.; Zofka, A.; Turos, M.; Li, X.; Velasquez, R.; Xue, L.; Buttlar, W.G.; Paulino, G.; Braham, A.; Dave, E.; et al. Investigation of Low Temperature Cracking in Asphalt Pavements. A Transportation Pooled Fund Study; Report No MN/RC 2007-43; University of Minnesota: Minneapolis, MN, USA, 2007.
  22. Apeagyei, A.K.; Dave, E.V.; Buttler, W.G. Effect of cooling rate of thermal cracking of asphalt concrete pavements. J. Assoc. Asphalt Paving Technol. 2008, 77, 709-738. open in new tab
  23. Marasteanu, M.; Buttlar, W.; Bahia, H.; Williams, C. Investigation of Low Temperature Cracking in Asphalt Pavements, National Pooled Fund Study-Phase II; Report No MN/RC 2012-23; University of Minnesota: Minneapolis, MN, USA, 2012.
  24. Tabatabaee, H.; Velasquez, R.; Bahia, H.U. Modeling thermal stress in asphalt mixtures undergoing glass transition and physical hardening. Transp. Res. Rec. J. Transp. Res. Board 2012, 2296, 106-114. [CrossRef] open in new tab
  25. Hajj, E.Y.; Souliman, M.; Alavi, M.Z.; Salazar, L.L. Influence of hydrogreen bioasphalt on viscoelastic properties of reclaimed asphalt mixtures. Transp. Res. Rec. J. Transp. Res. Board 2013, 2371, 13-22. [CrossRef] open in new tab
  26. Farrar, M.J.; Hajj, E.Y.; Planche, J.-P.; Alavi, M.Z. A method to estimate the thermal stress build-up in an asphalt mixture from a single-cooling event. Road Mater. Pavement Des. 2013, 14 (Suppl. 1), 201-211. [CrossRef] open in new tab
  27. AASHTO. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures MEPDG; Final Report; RA, Inc.: Champaign, IL, USA, 2004.
  28. AASHTO PP 42-02. Standard Practice for Determination of Low-Temperature Performance Grade (PG) of Asphalt Binders; AASHTO Provisional Standards; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2005. open in new tab
  29. ASTM D6816-11. Standard Practice for Determining Low-Temperature Performance Grade of Asphalt Binders; ASTM International: West Conshohocken, PA, USA, 2011. open in new tab
  30. Hills, J.F.; Brien, D. The fracture of bitumen and asphalt mixes by temperature induced stresses. J. Assoc. Asphalt Paving Technol. 1966, 35, 294-309.
  31. Burgers, B.A.; Kopvillem, O.; Young, F.D.; Ste. Anne Test-relationships between predicted fracture temperatures and low temperature field performance. J. Assoc. Asphalt Paving Technol. 1971, 40, 148-193.
  32. Christianson, J.T.; Murray, D.W.; Anderson, K.O. Stress prediction and low temperature fracture susceptibility of asphalt concrete pavements. J. Assoc. Asphalt Paving Technol. 1972, 41, 494-523.
  33. Haas, R.C.G. A Method for Designing Asphalt Pavements to Minimize Low-Temperature Shrinkage Cracking;
  34. Janoo, V.; Bayer, J.; Walsh, M. Thermal Stress Measurements in Asphalt Concrete; CRREL Report 93-10; US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1993. open in new tab
  35. Kliewer, J.E.; Zeng, H.; Vinson, T.S. Aging and low-temperature cracking of asphalt concrete mixture. J. Cold Reg. Eng. 1996, 10, 134-148. [CrossRef] open in new tab
  36. Qian, G.; Zheng, J.; Wang, Q. Calculating Thermal Stresses of Asphalt Pavement in Environmental Conditions. Prceedings of the Symposium on Pavement Mechanics and Materials, Blacksburg, VA, USA, 3-6 June 2007; open in new tab
  37. pp. 78-87. [CrossRef] open in new tab
  38. Appl. Sci. 2019, 9, 846 19 of 20 open in new tab
  39. Gajewski, M.; Langlois, P.-A. Prediction of Asphalt Concrete Low-Temperature Cracking Resistance on the Basis of Different Constitutive Models. Procedia Eng. 2014, 91, 81-86. [CrossRef] open in new tab
  40. Akentuna, M.; Kim, S.S.; Nazzal, M.; Abbas, A.R.; Arefin, M.S. Study of the thermal stress development of asphalt mixtures using the Asphalt Concrete Cracking Device (ACCD). Constr. Build Mater. 2016, 114, 416-422. [CrossRef] open in new tab
  41. Yavuzturk, C.; Ksaibati, K. Assessment of Thermal Stresses in Asphalt Pavements Due to Environmental Conditions; University of Wyoming: Laramie, WY, USA, 2006.
  42. Pszczola, M.; Jaczewski, M.; Rys, D.; Jaskula, P.; Szydlowski, C. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test. Materials 2018, 11, 100. [CrossRef] [PubMed] open in new tab
  43. Jaczewski, M.; Judycki, J.; Jaskula, P. Asphalt concrete subjected to long-time loading at low temperatures-Deviations from the time-temperature superposition principle. Constr. Build. Mater. 2019, 202, 426-439. [CrossRef] open in new tab
  44. Pszczoła, M.; Judycki, J. Testing of low temperature behaviour of asphalt mixtures in bending creep test. In Proceedings of the 7th International RILEM Symposium on Advanced Testing and Characterization of Bituminous Materials: Advanced Testing and Characterization of Bituminous Materials, Rhodes, Greece, 11 May 2009; pp. 303-312. open in new tab
  45. Zofka, A.; Marasteanu, M.O.; Turos, M. Determination of asphalt mixture creep compliance at low temperatures using thin beam specimens. Transp. Res. Rec. J. Transp. Res. Board 2008, 2057, 134-139. [CrossRef] open in new tab
  46. Zofka, A.; Marasteanu, M.O.; Turos, M. Investigation of asphalt mixture creep compliance at low temperatures. Road Mater. Pavement Des. 2011, 9, 269-285. [CrossRef] open in new tab
  47. Judycki, J.; Jaskula, P.; Dolzycki, B.; Pszczola, M.; Jaczewski, M.; Rys, D.; Stienss, M. Investigation of low-temperature cracking in newly constructed high-modulus asphalt concrete base course of a motorway pavement. Road Mater. Pavement Des. 2015, 16, 362-388. [CrossRef] open in new tab
  48. CEN-EN 12591. Bitumen and Bituminous Binders-Specifications for Paving Grade Bitumens; European Committee for Standardization CEN: Brussels, Belgium, 2009. open in new tab
  49. CEN-EN 14023. Bitumen and Bituminous Binders-Specifications Framework for Polymer Modified Bitumens; open in new tab
  50. European Committee for Standardization CEN: Brussels, Belgium, 2010. open in new tab
  51. CEN-EN 13108-1. Bituminous Mixtures-Material Specifications-Part 1: Asphalt Concrete; European Committee for Standardization CEN: Brussels, Belgium, 2016. open in new tab
  52. Szymanski, D. Assessment of the Low-Temperature Properties of Asphalt Mixtures Based on the TSRST, UTST and TCT Test Results. Master's Thesis, Gdansk University of Technology, Gdańsk, Poland, 2018. (In Polish)
  53. CEN-EN 12697-46. Bituminous Mixtures-Test Methods for Hot Mix Asphalt-Part: 46: Low Temperature Cracking and Properties by Uniaxial Tension Tests; European Committee for Standardization CEN: Brussels, Belgium, 2012. open in new tab
  54. CEN-EN 12697-33. Bituminous Mixtures-Test Methods for Hot Mix Asphalt-Part 33: Specimen Prepared by Roller Compactor; European Committee for Standardization CEN: Brussels, Belgium, 2007. open in new tab
  55. Judycki, J. Bending Test of Asphaltic Mixtures under Statical Loading. In Design and Quality Control of Bituminous Mixes, Proceedings of the 4th International Symposium on the Role of Mechanical Tests for the Characterization, Budapest, Hungary, 23-25 October 1990; Book Series: RILEM Proceedings; open in new tab
  56. Taylor & Francis: Oxfordshire, UK, 1990; Volume 8, pp. 207-227. open in new tab
  57. Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1980.
  58. Rowe, G.M.; Sharrock, M.J. Alternate shift factor relationship for describing the temperature dependency of the visco-elastic behaviour of asphalt materials. Transp. Res. Rec. 2011, 2207, 125-135. [CrossRef] open in new tab
  59. Jaczewski, M.; Judycki, J.; Jaskuła, P. Modelling of Asphalt Mixes under Long Time Creep at Low Temperatures. Transp. Res. Procedia 2016, 14, 3527-3535. [CrossRef] open in new tab
  60. Mejłun, Ł.; Judycki, J.; Dołżycki, B. Comparison of Elastic and Viscoelastic Analysis of Asphalt Pavement at High Temperature. Procedia Eng. 2017, 172, 746-753. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 45 times

Recommended for you

Meta Tags