Charge Transfer, Complexes Formation and Furan Fragmentation Induced by Collisions with Low-Energy Helium Cations - Publication - Bridge of Knowledge

Search

Charge Transfer, Complexes Formation and Furan Fragmentation Induced by Collisions with Low-Energy Helium Cations

Abstract

The present work focuses on unraveling the collisional processes leading to the fragmentation of the gas-phase furan molecules under the He+ and He2+ cations impact in the energy range 5–2000 eV. The presence of different mechanisms was identified by the analysis of the optical fragmentation spectra measured using the collision-induced emission spectroscopy (CIES) in conjunction with the ab initio calculations. The measurements of the fragmentation spectra of furan were performed at the different kinetic energies of both cations. In consequence, several excited products were identified by their luminescence. Among them, the emission of helium atoms excited to the 1s4d1D2,3D1,2,3 states was recorded. The structure of the furan molecule lacks an He atom. Therefore, observation of its emission lines is spectroscopic evidence of an impact reaction occurring via relocation of the electronic charge between interacting entities. Moreover, the recorded spectra revealed significant variations of relative band intensities of the products along with the change of the projectile charge and its velocity. In particular, at lower velocities of He+, the relative cross-sections of dissociation products have prominent resonance-like maxima. In order to elucidate the experimental results, the calculations have been performed by using a high level of quantum chemistry methods. The calculations showed that in both impact systems two collisional processes preceded fragmentation. The first one is an electron transfer from furan molecules to cations that leads to the neutralization and further excitation of the cations. The second mechanism starts from the formation of the He−C4H4O+/2+ temporary clusters before decomposition, and it is responsible for the appearance of the narrow resonances in the relative cross-section curves

Citations

  • 6

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cite as

Full text

download paper
downloaded 45 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES no. 20,
ISSN: 1661-6596
Language:
English
Publication year:
2019
Bibliographic description:
Wąsowicz T., Łabuda M., Pranszke B.: Charge Transfer, Complexes Formation and Furan Fragmentation Induced by Collisions with Low-Energy Helium Cations// INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES -Vol. 20,iss. 23 (2019), s.6022-
DOI:
Digital Object Identifier (open in new tab) 10.3390/ijms20236022
Bibliography: test
  1. Larsson, M.; Geppert, W.D.; Nyman, G. Ion chemistry in space. Rep. Prog. Phys. 2012, 75, 066901. [CrossRef] [PubMed] open in new tab
  2. Charnley, S.B.; Ehrenfreund, P.; Kuan, Y.-J. Spectroscopic diagnostics of organic chemistry in the protostellar environment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2001, 57, 685-704. [CrossRef] open in new tab
  3. Kuan, Y.-J.; Charnley, S.B.; Huang, H.-C.; Kisiel, Z.; Ehrenfreund, P.; Tseng, W.-L.; Yan, C.-H. Searches for interstellar molecules of potential prebiotic importance. Adv. Space Res. 2004, 33, 31-39. [CrossRef] open in new tab
  4. Utke, P.; Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 2008, 26, 1197. [CrossRef] open in new tab
  5. Gudmundsson, J.T. Plasma Sources Science and Technology Ion energy distribution in H 2 /Ar plasma in a planar inductive discharge. Plasma Sources Sci. Technol. 1999, 8, 58. [CrossRef] open in new tab
  6. Rusu, A.; Popa, G.; Sullivan, J.L. Electron plasma parameters and ion energy measurement at the grounded electrode in an rf discharge. J. Phys. D Appl. Phys. 2002, 35, 2808-2814. [CrossRef] open in new tab
  7. Schlathölter, T.; Alvarado, F.; Bari, S.; Hoekstra, R. Ion-Induced Ionization and Fragmentation of DNA Building Blocks. Phys. Scr. 2006, 73, C113-C117. [CrossRef] open in new tab
  8. Schlathölter, T.; Hoekstra, R.; Morgenstern, R. Charge Driven Fragmentation of Biologically Relevant Molecules. Int. J. Mass Spectrom. 2004, 233, 173-179. [CrossRef] open in new tab
  9. De Vries, J.; Hoekstra, R.; Morgenstern, R.; Schlathölter, T. Charge Driven Fragmentation of Nucleobases. Phys. Rev. Lett. 2003, 91, 053401. [CrossRef] open in new tab
  10. Deng, Z.; Bald, I.; Illenberger, E.; Huels, M.A. Beyond the Bragg Peak: Hyperthermal Heavy Ion Damage to DNA Components. Phys. Rev. Lett. 2005, 95, 153201. [CrossRef] open in new tab
  11. Amaldi, U.; Kraft, G. Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 2005, 68, 1861-1882. [CrossRef] open in new tab
  12. Int. J. Mol. Sci. 2019, 20, 6022 17 of 20 open in new tab
  13. González-Magaña, O.; Tiemens, M.; Reitsma, G.; Boschman, L.; Door, M.; Bari, S.; Lahaie, P.O.; Wagner, J.R.; Huels, M.A.; Hoekstra, R.; et al. Fragmentation of protonated oligonucleotides by energetic photons and C q+ ions. Phys. Rev. A 2013, 87, 032702. [CrossRef] open in new tab
  14. Ptasińska, S.; Denifl, S.; Scheier, P.; Märk, T.D. Inelastic electron interaction (attachment/ionization) with deoxyribose. J. Chem. Phys. 2004, 120, 8505. [CrossRef] [PubMed] open in new tab
  15. Guler, L.P.; Yu, Y.Q.; Kenttämaa, H.I. An Experimental and Computational Study of the Gas-Phase Structures of Five-Carbon Monosaccharides. J. Phys. Chem. A 2002, 106, 6754-6764. [CrossRef] open in new tab
  16. Sulzer, P.; Ptasinska, S.; Zappa, F.; Mielewska, B.; Milosavljevic, A.R.; Scheier, P.; Märk, T.D.; Bald, I.; Gohlke, S.; Huels, M.A.; et al. Dissociative Electron Attachment to Furan, Tetrahydrofuran, and Fructose. J. Chem. Phys. 2006, 125, 044304. [CrossRef] open in new tab
  17. Kappe, C.O.; Murphree, S.S.; Padwa, A. Synthetic applications of furan Diels-Alder chemistry. Tetrahedron 1997, 53, 14179-14233. [CrossRef] open in new tab
  18. Bruinsma, O.S.; Tromp, P.J.; de Sauvage Nolting, H.J.; Moulijn, J.A. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor: 2. Heterocyclic compounds, their benzo and dibenzo derivatives. Fuel 1988, 67, 334-340. [CrossRef] open in new tab
  19. Grela, M.A.; Amorebieta, V.T.; Colussi, A.J. Very low pressure pyrolysis of furan, 2-methylfuran, and 2,5-dimethylfuran. The stability of the furan ring. J. Phys. Chem. 1985, 89, 38-41. [CrossRef] open in new tab
  20. Lifshitz, A.; Bidani, M.; Bidani, S. Thermal reactions of cyclic ethers at high temperatures. III. Pyrolysis of furan behind reflected shocks. J. Phys. Chem. 1986, 90, 5373-5377. [CrossRef] open in new tab
  21. Organ, P.P.; Mackie, J.C. Kinetics of pyrolysis of furan. J. Chem. Soc. Faraday Trans. 1991, 87, 815-823. [CrossRef] open in new tab
  22. Fulle, D.; Dib, A.; Kiefer, J.H.; Zhang, Q.; Yao, J.; Kern, R.D. Pyrolysis of Furan at Low Pressures: Vibrational Relaxation, Unimolecular Dissociation, and Incubation Times. J. Phys. Chem. A 1998, 102, 7480-7486. [CrossRef] open in new tab
  23. Liu, R.; Zhou, X.; Zhai, L. Theoretical investigation of unimolecular decomposition channels of furan. J. Comput. Chem. 1998, 19, 240-249. [CrossRef] open in new tab
  24. Sorkhabi, O.; Qi, F.; Rizvi, A.H.; Suits, A.G. Ultraviolet photodissociation of furan probed by tunable synchrotron radiation. J. Chem. Phys. 1999, 111, 100. [CrossRef] open in new tab
  25. Sendt, K.; Bacskay, G.B.; Mackie, J.C. Pyrolysis of Furan: Ab Initio Quantum Chemical and Kinetic Modeling Studies. J. Phys. Chem. A 2000, 104, 1861-1875. [CrossRef] open in new tab
  26. Rennie, E.E.; Johnson, C.A.F.; Parker, J.E.; Holland, D.M.P.; Shaw, D.A.; MacDonald, M.A.; Hayes, M.A.; Shpinkova, L.G. A study of the spectroscopic and thermodynamic properties of furan by means of photoabsorption, photoelectron and photoion spectroscopy. Chem. Phys. 1998, 236, 365-385. [CrossRef] open in new tab
  27. Hore, N.R.; Russell, D.K. The thermal decomposition of 5-membered rings: A laser pyrolysis study. New. J. Chem. 2004, 28, 606-613. [CrossRef] open in new tab
  28. Dampc, M.; Zubek, M. Dissociation and fragmentation of furan by electron impact. Int. J. Mass Spectrom. 2008, 277, 52-56. [CrossRef] open in new tab
  29. Vasiliou, A.; Nimlos, M.R.; Daily, J.W.; Ellison, G.B. Thermal decomposition of furan generates propargyl radicals. J. Phys. Chem. A 2009, 113, 8540-8547. [CrossRef] open in new tab
  30. Pešić, Z.D.; Rolles, D.; Dumitriu, I.; Berrah, N. Fragmentation dynamics of gas-phase furan following K-shell ionization. Phys. Rev. A 2010, 82, 013401. [CrossRef] open in new tab
  31. Wasowicz, T.J.; Pranszke, B. Charge transfer and formation of complexes in the He + collisions with the furan molecules. J. Phys. Conf. Ser. 2015, 635, 032055. [CrossRef] open in new tab
  32. Dampc, M.; Linert, I.; Zubek, M. Ionization and fragmentation of furan molecules by electron collisions. J. Phys. B Mol. Opt. Phys. 2015, 48, 165202. [CrossRef] open in new tab
  33. Wasowicz, T.J.; Pranszke, B. Interactions of protons with furan molecules studied by collision-induced emission spectroscopy at the incident energy range of 50-1000 eV. Eur. Phys. J. D 2016, 70, 175. [CrossRef] open in new tab
  34. Erdmann, E.; Łabuda, M.; Aguirre, N.F.; Díaz-Tendero, S.; Alcamí, M. Furan Fragmentation in the Gas Phase: New Insights from Statistical and Molecular Dynamics Calculations. J. Phys. Chem. A 2018, 122, 4153. [CrossRef] [PubMed] open in new tab
  35. Windholz, L.; Drozdowski, R.; Wasowicz, T.J.; Kwela, J. Anticrossing effects in Stark spectra of helium. In Proceedings of the Fifth Workshop on Atomic and Molecular Physics, Jurata, Poland, 1 June 2005; pp. 24-28. open in new tab
  36. Windholz, L.; Drozdowski, R.; Wąsowicz, T.; Kwela, J. Stark effect in He I in extremely high electric field. Opt. Appl. 2006, 36, 569-574. open in new tab
  37. Int. J. Mol. Sci. 2019, 20, 6022 18 of 20 open in new tab
  38. Windholz, L.; Winklhofer, E.; Drozdowski, R.; Kwela, J.; Waşowicz, T.J.; Heldt, J. Stark effect of atomic Helium second triplet series in electric fields up to 1600 kV/cm. Phys. Scr. 2008, 78, 065303. [CrossRef] open in new tab
  39. Windholz, L.; Wasowicz, T.J.; Drozdowski, R.; Kwela, J. Stark effect of atomic Helium singlet lines. J. Opt. Soc. Am. B 2012, 29, 934-943. [CrossRef] open in new tab
  40. Hoekstra, R.; de Heer, F.J.; Morgenstern, R. State-selective electron capture in collisions of He 2+ with H. J. Phys. B Mol. Opt. Phys. 1991, 24, 4025. [CrossRef] open in new tab
  41. Snow, T.P.; McCall, B.J. Diffuse Atomic and Molecular Clouds. Annu. Rev. Astron. Astrophys. 2006, 44, 367. [CrossRef] open in new tab
  42. Feldman, U.; Landi, E.; Schwadron, N.A. On the sources of fast and slow solar wind. J. Geophys. Res. Space Phys. 2005, 110, 07109. [CrossRef] open in new tab
  43. Zeitlin, C.; Hassler, D.M.; Cucinotta, F.A.; Ehresmann, B.; Wimmer-Schweingruber, R.F.; Brinza, D.E.; Kang, S.; Weigle, G.; Böttcher, S.; Böhm, E.; et al. Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory. Science 2013, 340, 1080-1084. [CrossRef] open in new tab
  44. Tsujii, H.; Kamada, T.; Baba, M.; Tsuji, H.; Kato, H.; Kato, S.; Yamada, S.; Yasuda, S.; Yanagi, T.; Kato, H.; et al. Clinical advantages of carbon-ion radiotherapy. New J. Phys. 2008, 10, 075009. [CrossRef] open in new tab
  45. Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; et al. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett. 2009, 94, 181502. [CrossRef] open in new tab
  46. Allison, R.R.; Sibata, C.; Patel, R. Future radiation therapy: Photons, protons and particles. Future Oncol. 2013, 9, 493-504. [CrossRef] open in new tab
  47. Loeffler, J.S.; Durante, M. Charged particle therapy -optimization, challenges and future directions. Nat. Rev. Clin. Oncol. 2013, 10, 411-424. [CrossRef] open in new tab
  48. Tommasino, F.; Scifoni, E.; Durante, M. New ions for therapy. Int. J. Part. Ther. 2016, 2, 428-438. [CrossRef] open in new tab
  49. Luque, J.; Crosley, D.R. Lifbase: Database and Spectral Simulation (Version 1.5), 1999. Available online: https://www.semanticscholar.org/paper/LIFbase%3A-Database-and-Spectral-Simulation-Luque- Crosley/638d6c50f91da8676d704f5317d55eada47b382d (accessed on 2 October 2019). open in new tab
  50. Brzozowski, J.; Bunker, P.; Elander, N.; Erman, P. Predissociation effects in the A, B, and C states of CH and the interstellar formation rate of CH via inverse predissociation. Astrophys. J. 1976, 207, 414-424. [CrossRef] open in new tab
  51. Zachwieja, M. New Investigations of the A2∆-X2Π Band System in the CH Radical and a New Reduction of the Vibration-Rotation Spectrum of CH from the ATMOS Spectra. J. Mol. Spectroc. 1995, 170, 285-309. [CrossRef] open in new tab
  52. Luque, J.; Crosley, D.R. Electronic transition moment and rotational transition probabilities in CH. I. A2∆-X 2Π system. J. Chem. Phys. 1996, 104, 2146. [CrossRef] open in new tab
  53. Wasowicz, T.J.; Pranszke, B. Fragmentation of tetrahydrofuran molecules by H + , C + , and O + collisions at the incident energy range of 25−1000 eV. J. Phys. Chem. A 2015, 119, 581-589. [CrossRef] open in new tab
  54. Wasowicz, T.J.; Pranszke, B. Observation of the hydrogen migration in the cation-induced fragmentation of the pyridine molecules. J. Phys. Chem. A 2016, 120, 964-971. [CrossRef] open in new tab
  55. Linert, I.; Lachowicz, I.; Wasowicz, T.J.; Zubek, M. Fragmentation of isoxazole molecules by electron impact in the energy range 10-85 eV. Chem. Phys. Lett. 2010, 498, 27-31. [CrossRef] open in new tab
  56. Wasowicz, T.; Linert, I.; Lachowicz, I.; Zubek, M. Electron impact fragmentation of pyrrole molecules studied by fluorescence emission spectroscopy. Photonics Lett. Pol. 2011, 3, 110-112.
  57. Wasowicz, T.J.; Kivimäki, A.; Dampc, M.; Coreno, M.; de Simone, M.; Zubek, M. Photofragmentation of tetrahydrofuran molecules in the vacuum-ultraviolet region via superexcited states studied by fluorescence spectroscopy. Phys. Rev. A 2011, 83, 033411. [CrossRef] open in new tab
  58. Wasowicz, T.J.; Kivimäki, A.; Coreno, M.; Zubek, M. Formation of CN (B 2 Σ+) radicals in the vacuum-ultraviolet photodissociation of pyridine and pyrimidine molecules. J. Phys. B 2014, 47, 055103. [CrossRef] open in new tab
  59. Zubek, M.; Wasowicz, T.J.; Dąbkowska, I.; Kivimäki, A.; Coreno, M. Hydrogen migration in formation of NH(A3Π) radicals via superexcited states in photodissociation of isoxazole molecules. J. Chem. Phys. 2014, 141, 064301. [CrossRef] [PubMed] open in new tab
  60. Wasowicz, T.J.; Dabkowska, I.; Kivimäki, A.; Coreno, M.; Zubek, M. Elimination and migration of hydrogen in the vacuum-ultraviolet photodissociation of pyridine molecules. J. Phys. B 2017, 50, 015101. [CrossRef] open in new tab
  61. Int. J. Mol. Sci. 2019, 20, 6022 19 of 20 open in new tab
  62. Wasowicz, T.J.; Kivimäki, A.; Coreno, M.; Zubek, M. Superexcited states in the vacuum-ultraviolet photofragmentation of isoxazole molecules. J. Phys. B 2012, 45, 205103. [CrossRef] open in new tab
  63. Wasowicz, T.J. Hydrogen migration observed in fragmentation of the pyridine molecules in collisions with the H + , H 2+ , He + and He ++ cations. J. Phys. 2015, 635, 032114. [CrossRef] open in new tab
  64. Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (Ver. 5.7.1); open in new tab
  65. Pranszke, B. Charge transfer excitation in N + + CO 2 collisions under beam conditions. Chem. Phys. Lett. 2009, 484, 24-27. [CrossRef] open in new tab
  66. Erdmann, E.; Bacchus-Montabonel, M.-C.; Łabuda, M. Modelling charge transfer processes in C 2+ - tetrahydrofuran collision for ion-induced radiation damage in DNA building blocks. Phys. Chem. Chem. Phys. 2017, 19, 19722-19732. [CrossRef] open in new tab
  67. Bowen, R.D. Ion-Neutral Complexes. Acc. Chem. Res. 1991, 24, 364-371. [CrossRef] open in new tab
  68. Gappa, A.; Herpers, E.; Herrmann, R.; Huelsewede, V.; Kappert, W.; Klar, M.; Kirmse, W. Ion−Molecule Complexes in 1,2-Alkyl Shifts. J. Am. Chem. Soc. 1995, 117, 12096-12106. [CrossRef] open in new tab
  69. Ottinger, C.; Kowalski, A. Reactions of C( 3 P) and C + ( 2 P) with NH 3 Studied Spectroscopically at Hyperthermal Energies. J. Phys. Chem. A 2002, 106, 8296-8307. [CrossRef] open in new tab
  70. Ijaz, W.; Gregg, Z.; Barnes, G.L. Complex Formation During SID and Its Effect on Proton Mobility. J. Phys. Chem. Lett. 2013, 4, 3935-3939. [CrossRef] open in new tab
  71. Bacchus-Montabonel, M.-C.; Łabuda, M.; Tergiman, Y.S.; Sienkiewicz, J.E. Theoretical treatment of charge-transfer processes induced by collision of C q+ ions with uracil. Phys. Rev. A 2005, 72, 052706. [CrossRef] open in new tab
  72. Łabuda, M.; González-Vázquez, J.; González, L. A wavepacket study of the low-energy charge transfer process in the S 3+ + H reaction using time-resolved electronic densities. Phys. Chem. Chem. Phys. 2010, 12, 5439-5445. [CrossRef] open in new tab
  73. Furan. Available online: https://www.sigmaaldrich.com/catalog/product/aldrich/185922?lang=pl&region=PL (accessed on 12 July 2018).
  74. Ottinger, C. Electronically Chemiluminescent Ion-Molecule Exchange Reactions. In Gas Phase Ion Chemistry; open in new tab
  75. Bowers, M., Ed.; Academic Press: New York, NY, USA, 1984; Volume 3.
  76. Ehbrecht, A.; Kowalski, A.; Ottinger, C. Hot-atom chemiluminescence: A beam study of the reactions C( 3 P) + H 2 →CH (A 2 ∆, B 2 Σ − , C 2 Σ + ) + H. Chem. Phys. Lett. 1998, 284, 205-213. [CrossRef] open in new tab
  77. Bacchus-Montabonel, M.-C.; Tergiman, Y.S. Charge transfer dynamics of carbon ions with uracil and halouracil targets at low collision energies. Chem. Phys. Lett. 2011, 503, 45-48. [CrossRef] open in new tab
  78. Bacchus-Montabonel, M.-C.; Tergiman, Y.S. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine. Phys. Chem. Chem. Phys. 2011, 13, 9761-9767. [CrossRef] open in new tab
  79. Bacchus-Montabonel, M.-C. Ab initio treatment of ion-induced charge transfer dynamics of isolated 2-deoxy-D-ribose. J. Phys. Chem. A 2014, 118, 6326-6332. [CrossRef] open in new tab
  80. Bacchus-Montabonel, M.-C. Proton-Induced Damage on 2-Aminooxazole, a Potential Prebiotic Compound. J. Phys. Chem. A 2015, 119, 728-734. [CrossRef] [PubMed] open in new tab
  81. Calvo, F.; Bacchus-Montabonel, M.-C. Size-Induced Segregation in the Stepwise Microhydration of Hydantoin and Its Role in Proton-Induced Charge Transfer. J. Phys. Chem. A 2018, 122, 1634-1642. [CrossRef] [PubMed] open in new tab
  82. Werner, H.-J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A general-purpose quantum chemistry program. WIREs Comput. Mol. Sci. 2012, 2, 242-253. [CrossRef] open in new tab
  83. Werner, H.-J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M.; Celani, P.; Györffy, W.; Kats, D.; Korona, T.; Lindh, R.; et al. MOLPRO ver.2015.1. Available online: www.molpro.net (accessed on 15 May 2019). open in new tab
  84. Becke, D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098. [CrossRef] open in new tab
  85. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [CrossRef] open in new tab
  86. Becke, D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [CrossRef] open in new tab
  87. Woon, E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358. [CrossRef] open in new tab
  88. Int. J. Mol. Sci. 2019, 20, 6022 20 of 20 open in new tab
  89. Łabuda, M.; Tergiman, Y.S.; Bacchus-Montabonel, M.-C.; Sienkiewicz, J.E. Ab initio molecular treatment for charge transfer by S 3+ ion on hydrogen. Chem. Phys. Lett. 2004, 394, 446-451. [CrossRef] open in new tab
  90. Łabuda, M.; Tergiman, Y.; Bacchus-Montabonel, M.-C.; Sienkiewicz, J. State selective electron capture in the collision of S 3+ ions in atomic hydrogen and helium. Int. J. Mol. Sci. 2004, 5, 265-275. [CrossRef] open in new tab
  91. Bacchus-Montabonel, M.-C.; Łabuda, M.; Tergiman, Y.S.; Sienkiewicz, J.E. Theoretical treatment of charge transfer processes: From ion/atom to ion/biomolecule interactions. Top. Theory Chem. Phys. Syst. 2007, 16, 203-214. open in new tab
  92. Łabuda, M.; González-Vázquez, J.; Martín, F.; González, L. A non-adiabatic wavepacket dynamical study of the low energy charge transfer process in the S 3+ + H collision. Chem. Phys. 2012, 400, 165-170. [CrossRef] open in new tab
  93. Bene, E.; Martínez, P.; Halsáz, G.J.; Vibók, Á.; Bacchus-Montabonel, M.-C. Charge transfer in collisions of C 2+ carbon ions with CO and OH targets. Phys. Rev. A 2009, 80, 012711. [CrossRef] open in new tab
  94. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 111 times

Recommended for you

Meta Tags